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“Indeed, we are still waiting for the rise of computational
drug discovery.”

R. Apweiler, BioSilico 2003, I, 5–6.

1. Introduction
Melanin synthesis, the main process involved in skin pigmenta-
tion, is largely regulated by the melanogenic enzyme tyrosi-

nase.[1] This is a bifunctional enzyme that catalyzes the hydrox-
ylation of tyrosine to DOPA and promotes the oxidation of
DOPA to DOPA quinone.[2] Its role is to protect the skin from ul-
traviolet (UV) radiation damage caused by sunlight and to
remove reactive oxygen species (ROS).[3] Notwithstanding, dis-
turbances in the amount and distribution of melanin pigments
might ultimately provide clues to several diseases. Albinism is
a genetic abnormality caused by a deficiency in melanin bio-

A set of novel atom-based molecular fingerprints is proposed
based on a bilinear map similar to that defined in linear algebra.
These molecular descriptors (MDs) are proposed as a new means
of molecular parametrization easily calculated from 2D molecu-
lar information. The nonstochastic and stochastic molecular indi-
ces match molecular structure provided by molecular topology
by using the kth nonstochastic and stochastic graph-theoretical
electronic-density matrices, Mk and Sk, respectively. Thus, the kth
nonstochastic and stochastic bilinear indices are calculated using
Mk and Sk as matrix operators of bilinear transformations. Chemi-
cal information is coded by using different pair combinations of
atomic weightings (mass, polarizability, vdW volume, and electro-
negativity). The results of QSAR studies of tyrosinase inhibitors
using the new MDs and linear discriminant analysis (LDA) dem-
onstrate the ability of the bilinear indices in testing biological
properties. A database of 246 structurally diverse tyrosinase in-
hibitors was assembled. An inactive set of 412 drugs with other
clinical uses was used; both active and inactive sets were proc-
essed by hierarchical and partitional cluster analyses to design
training and predicting sets. Twelve LDA-based QSAR models

were obtained, the first six using the nonstochastic total and
local bilinear indices and the last six with the stochastic MDs.
The discriminant models were applied; globally good classifica-
tions of 99.58 and 89.96% were observed for the best nonsto-
chastic and stochastic bilinear indices models in the training set
along with high Matthews correlation coefficients (C) of 0.99 and
0.79, respectively, in the learning set. External prediction sets used
to validate the models obtained were correctly classified, with ac-
curacies of 100 and 87.78%, respectively, yielding C values of
1.00 and 0.73. This subset contains 180 active and inactive com-
pounds not considered to fit the models. A simulated virtual
screen demonstrated this approach in searching tyrosinase inhib-
itors from compounds never considered in either training or pre-
dicting series. These fitted models permitted the selection of new
cycloartane compounds isolated from herbal plants as new tyro-
sinase inhibitors. A good correspondence between theoretical
and experimental inhibitory effects on tyrosinase was observed;
compound CA6 (IC50=1.32 mm) showed higher activity than the
reference compounds kojic acid (IC50=16.67 mm) and l-mimosine
(IC50=3.68 mm).
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synthesis which manifests as hypopigmentation of the skin,
hair, and eyes.[4] However, abnormal accumulation of melanin
pigments is responsible for hyperpigmentations including mel-
asma, freckles, and senile lentigines, which show satisfactory
subjective improvement upon treatment with de-pigmenting
agents such as hydroquinone (carcinogenic), ascorbic acid de-
rivatives, azelaic acid, retinoids, arbutin, and kojic acid.[5–8] How-
ever, many of the most popular de-pigmenting agents in use
today exhibit toxicity toward melanocytes and are known to
produce adverse side effects.[9–11] Inhibitors that target tyrosi-
nase, the rate-limiting enzyme in melanin production, promise
to be safer alternatives than melanocytolytic compounds.[12]

Therefore, compounds isolated from plant extracts that have
an inhibitory effect on melanin formation may be good candi-
dates for this purpose because of their relatively low side ef-
fects.[13]

In this context, one of the efforts in our research group has
been focused on finding new potent tyrosinase inhibitors
through trial-and-error techniques. Recently, Khan et al. report-
ed 2,5-disubstituted-1,3,4-oxadiazole analogues[14] with strong
inhibitory activity against the enzyme. In another publication,
the same research group reported that (+)-androst-4-ene-3,17-
dione as well as its five metabolic analogues having steroidal
skeletons, namely androsta-1,4-diene-3,17-dione, 17b-hydroxy-
androsta-1,4-dien-3-one, 11a-hydroxyandrost-4-ene-3,17-dione,
11a,17b-dihydroxyandrost-4-en-3-one, and 15a-hydroxyan-
drosta-1,4-dien-17-one, exhibited moderate inhibitory activities
against tyrosinase.[15] In 2004, Ahmad et al.[16] reported that a
new coumarinolignoid, 8’-epi-cleomiscosin A, together with the
new glycoside, 8-O-b-d-glucopyranosyl-6-hydroxy-2-methyl-4H-
1-benzopyrane-4-one exhibited strong inhibition against tyrosi-
nase relative to the standard tyrosinase inhibitors kojic acid
and l-mimosine. The new coumarinolignoid exhibited twofold
greater potency than that of the standard potent inhibitor
l-mimosine.[16]

Because the experimental tests (based on trial-and-error
screening) that must be performed, especially pharmacological
and toxicological tests, are usually expensive and time con-
suming, the pharmaceutical industry has reoriented its re-
search strategy over the past two decades toward the devel-
opment of methods that enable the rational selection or
design of novel agents with desired properties.[17] To decrease
costs, pharmaceutical companies must find new technologies
to replace the old “hand-crafted” synthesis and test new chem-
ical entities (NCE) approaches.[18] In this sense, cheminformatics
can be used to analyze data from high-throughput screening
(HTS) and other forms of chemistry, thereby aiding the identifi-
cation of optimal lead structures.[19]

Virtual screening techniques may be classified according to
their particular modeling of molecular recognition and the
type of algorithm used in database searching.[18,19] If the target
3D structure is known (or at least the active site), one of the
structure-based virtual screening methods can be applied.
These methods are based on the principle of complementarity:
the receptor of a biologically active compound is complemen-
tary to the compound itself (the lock-and-key model).[18,19] On
the other hand, ligand-based methods are related to the prin-

ciple of similarity; that is, similar compounds are assumed to
produce similar effects. In this case, if one or more active com-
pounds are known, it is possible to search a database for simi-
lar but more potent molecules. The selection of the method
depends on the knowledge of the active molecules and their
receptor. In the case of tyrosinase, its NMR structure is still not
available, thus limiting structure-based methods.[20]

Therefore, ligand-based methods are appropriate for this
case because many tyrosinase inhibitors are known; they can
establish QSAR (quantitative structure–activity relationship)
models that describe the biological activity of new compounds
and that predict their ability to inhibit tyrosinase activity. In ad-
dition, if computational approaches based on discrimination
functions are used, it is possible to distinguish between active
and inactive compounds, and to predict the biological activity
of new leads. Therefore, cheminformatic in silico methods
appear to be particularly rewarding in terms of both cost and
time benefits and are easily integrated into the modern drug-
discovery process.[21,22] Moreover, several authors have reported
a high incidence in the use of novel molecular descriptors to
develop QSAR studies for in silico virtual drug screening.[21–25]

The definition of novel molecular descriptors is a promising
field in medicinal chemistry as well as the veterinary, agricultur-
al, and pharmaceutical sciences.

Recently, a novel scheme for the rational in silico molecular
design (or selection and identification of compounds) and for
QSAR/QSPR studies was introduced by others of our research
team: TOpological MOlecular COMputer Design–Computer-
Aided Rational Drug Design (TOMOCOMD–CARDD).[26] This ap-
proach, based on principles of novel methods for on chemical
graph and algebraic theory, has been successfully used in the
description of different physical, physicochemical, and chemi-
cal properties of organic compounds.[27–29] The prediction of
many biological activities were also effectively modeled with
TOMOCOMD–CARDD descriptors,[30–33] including studies related
to proteomics,[34,35] nucleic acid–drug interactions,[36, 37] and the
fast-track discovery of novel antimalarial compounds.[38]

Herein we propose a novel set of molecular descriptors
(MDs), namely nonstochastic and stochastic bilinear indices.
Other aspects presented include the use of these new MDs
and a linear discriminant analysis (LDA) strategy to find quanti-
tative models that discriminate tyrosinase inhibitors from inac-
tive compounds. We also describe an experiment of ligand-
based virtual screening that was carried out to simulate the
discovery of new leads from a database of marketable drugs.
As a final point, the in silico identification, isolation, and phar-
macological testing of new hits and lead compounds are pre-
sented.

2. Methods

In earlier work, we outlined outstanding features concerned
with the theory of 2D atom-based TOMOCOMD–CARDD de-
scriptors. In this case, the atom, atom type, and total bilinear
indices of the molecular pseudograph’s atom adjacency matrix
for small-to-medium sized organic compounds are explained

450 www.chemmedchem.org C 2007 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim ChemMedChem 2007, 2, 449 – 478

MED Y. Marrero-Ponce et al.

www.chemmedchem.org


in some detail elsewhere.[39,40] However, an overview of this ap-
proach is given below.

This method codes molecular structure by means of mathe-
matical quadratic, linear, and bilinear transformations. To calcu-
late these algebraic maps for a molecule, the atom-based mo-
lecular vector, �x (vector representation), and kth “nonstochastic
and stochastic graph-theoretical electronic-density matrices”
Mk and Sk (respective matrix representations) are construct-
ed.[27–33,38, 41–49] Such atom-adjacency relationships and chemical
information coding are applied in this study to generate a
series of atom-based MDs: atom, group, atom-type, and total
bilinear indices to be used in drug design and chemoinformat-
ic studies.

Therefore, the structure of this section is as follows: 1) a
background in atom-based molecular vector as well as nonsto-
chastic and stochastic graph-theoretical electronic-density ma-
trices are described respectively in subsections 2.1 and 2.2, and
2) an outline of the mathematical definition of bilinear maps
and a definition of our procedures are developed correspond-
ingly in subsections 2.3 and 2.4.

2.1. Chemical information and atom-based molecular vector

The atom-based molecular vector (�x) used to represent small-
to-medium-sized organic compounds has been explained else-
where in some detail.[17,27–33,38,41–49] The components (x) of �x are
numerical values, which represent a certain standard atomic
property (atom label). Therefore, these weights correspond to
different atomic properties for organic molecules. Thus, a mol-
ecule with 5, 10, 15,…, n atomic nuclei can be represented by
vectors with 5, 10, 15,…, n components, respectively, belong-
ing to the spaces <5, <10, <15,…, <n, for which n is the dimen-
sion of the real set (<n). That is to say, �x is the n-dimensional
vector property of the atoms (atomic nuclei) in a molecule.

This approach allows us to encode organic molecules such
as 3-sulfanylisonicotinaldehyde through the molecular vector
�x= [xN1, xC2, xC3, xC4, xC5, xC6, xC7, xO8, xS9] (see also Table 1 for mo-
lecular structure). This vector belongs to the product space <9.
However, diverse kinds of atomic weights (x) can be used for
coding information related to each atomic nucleus in the mol-
ecule. These atomic labels are chemically meaningful numbers
or their contributions derived by atom-to-atom analysis such
as atomic logP,[50] surface contributions of polar atoms,[51]

atomic molar refractivities,[52] atomic hybrid polarizabilities,[53]

Gasteiger–Marsilli atomic charge,[54] atomic masses (M),[55]

van der Waals volumes (V),[55] atomic polarizabilities (P),[55]

atomic electronegativities (K) in Mulliken scale,[54] and so on.
If one is interested in coding the chemical information by

means of two different molecular vectors, for instance, �x=
[x1,…,xn] and �y= [y1,…,yn] , then different combinations of mo-
lecular vectors (�x¼6 �y) are possible if a weighting scheme is
used. In the study reported herein, we characterized each
atomic nucleus with the following parameters: atomic mass
(M),[55] van der Waals volume (V),[55] atomic polarizability (P),[55]

and atomic Mulliken electronegativity (K).[54] The values of
these atomic labels are shown in Table 2. From this weighting
scheme, six (or twelve if �xM��yV ¼6 �xV��yM) combinations (pairs)

of molecular vectors (�x, �y; �x¼6 �y) can be computed: �xM��yV,
�xM��yP, �xM��yK, �xV��yP, �xV��yK, and �xP��yK. Here, we used the sym-
bols �xW��yZ, for which the subscripts W and Z mean two differ-
ent atomic properties from our weighting scheme, and a dash
(�) expresses the combination (pair) of two selected atom-
label chemical properties. To illustrate this, let us consider the
same organic molecule as in the example above (3-sulfanyliso-
nicotinaldehyde) and the following weighting scheme: M and
V (�xM��yV =�xV��yM). The following molecular vectors, �x= [14.01,
12.01, 12.01, 12.01, 12.01, 12.01, 12.01, 16.0, 32.07] and �y=
[15.599, 22.449, 22.449, 22.449, 22.449, 22.449, 22.449, 11.494,
24.429] are obtained if we use M and V as chemical weights
for coding each atom in the example molecule in �x and �y vec-
tors, respectively.

2.2. Background in nonstochastic and stochastic
graph-theoretical electronic-density matrices

In molecular topology, molecular structure is generally ex-
pressed by the hydrogen-suppressed graph, and therefore, a
molecule is represented by a graph. Informally, a graph G is a
collection of vertices (points) and edges (lines or bonds) con-
necting these vertices.[56–58]

Earlier we introduced new molecular matrices that describe
time-dependent changes in the electronic distribution
throughout the molecular backbone. The nQn kth nonstochas-
tic graph-theoretical electronic-density matrix of the molecular
pseudograph (G), Mk, is a symmetric and square matrix for
which n is the number of atoms (atomic nuclei) in the mole-
cule.[17,27–33,38, 41–49] The coefficients kmij are the elements of the
kth power of M(G) and are defined as follows:

mij ¼ Pij if i 6¼ j and 9ek 2 EðGÞ
¼ Lii if i ¼ j

¼ 0 otherwise

ð1Þ

where E(G) represents the set of edges of G. Pij is the
number of edges (bonds) between vertices (atomic nuclei) vi

and vj, and Lii is the number of loops in vi. The elements mij=

Pij of such a matrix represent the number of chemical bonds
between an atomic nucleus i and other j. The matrix Mk pro-
vides the numbers of walks of length k that link every pair of
vertices vi and vj. For this reason, each edge in M1 represents
two electrons belonging to the covalent bond between atomic
nuclei i and j ; for example, the inputs of M1 are equal to 1, 2,
or 3 when single, double, or triple bonds, correspondingly,
appear between vertices vi and vj. On the other hand, mole-
cules containing aromatic rings with more than one canonical
structure are represented by pseudographs. This happens for
substituted aromatic compounds such as pyridine, naphtha-
lene, and quinoline, where the presence of p electrons is ac-
counted by means of loops in each atomic nucleus of the aro-
matic ring. Conversely, aromatic rings with only one canonical
structure, such as furan, thiophene, and pyrrole are represent-
ed by a multigraph. To illustrate the calculation of these matri-
ces, let us consider the same molecule selected in the previous
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section. Table 1 depicts the molecular structure of this com-
pound and its labeled molecular pseudograph. The zero (k=
0), first (k=1), second (k=2), and third (k=3) powers of the
nonstochastic graph-theoretical electronic-density matrices are
also given in this Table.

As can be observed, Mk are graph-theoretical electronic-struc-
tural models, like an “extended HRckel theory (EHT) model”. The
M1 matrix considers all valence-bond electrons (s and p net-
works) in one step, and its powers (k=0, 1, 2, 3,…) can be con-
sidered as interacting-electron chemical-network models in the
k step. The complete model can be considered as an intermedi-
ate between the quantitative quantum-mechanical Schrçdinger
equation and classical chemical bonding ideas.[59]

The present approach is based on a simple model for the in-
tramolecular movement of all outer-shell electrons. Let us con-
sider a hypothetical situation in which a set of atoms is free in
space at an arbitrary initial time (t0). At this time, the electrons
are distributed around the atomic nuclei. Alternatively, these
electrons can be distributed around cores at discrete intervals
of time tk. In this sense, the electron in an arbitrary atom i can
move (step-by-step) to other atoms at different discrete time
periods tk (k=0, 1, 2, 3,…) throughout the chemical-bonding
network.

On the other hand, the kth stochastic graph-theoretical elec-
tronic-density matrix of G, Sk, can be directly obtained from Mk.
Here, Sk= [ksij] is a square matrix of order n (n=number of
atomic nuclei), and the elements ksij are defined as fol-
lows:[38, 46,48,49]

ksij ¼
kmij

kSUMi
¼

kmij

kdi

ð2Þ

in which kmij are the elements of the kth power of M and
the SUM of the ith row of Mk are named the k-order vertex

degree of atom i, kdi. Notably, the matrix Sk in Equation (2) has
the property that the sum of the elements in each row is 1. An
nQn matrix with nonnegative entries having this property is
called a “stochastic matrix”.[44] The kth sij elements are the tran-
sition probabilities with the electrons moving from atom i to j
in the discrete time periods tk. It should be also pointed out
that the kth element sij takes into consideration the molecular
topology in the k step throughout the chemical-bonding (s
and p) network. In this sense, the 2sij values can distinguish be-
tween hybrid states of atoms in bonds. For instance, the self-
return probability of second order (2sii) (that is, the probability
with which an electron returns to the original atom at t2)
varies regularly according to the different hybrid states of
atom i in the molecule; for example, an electron will have a
higher probability of returning to the sp C atom than to the
sp2 (or sp3) C atom in t2 [p ACHTUNGTRENNUNG(Csp)>p ACHTUNGTRENNUNG(Csp

2)>p ACHTUNGTRENNUNG(Csp
2
arom)>p ACHTUNGTRENNUNG(Csp

3)]
(see Table 1 for more details). This is a logical result if the elec-
tronegativity scale of these hybrid states is taken into account.

2.3. Mathematical bilinear forms: a theoretical framework

In mathematics, a bilinear form in a real vector space is a map-
ping b : V 	 V ! <, which is linear in both arguments.[60–65]

Therefore, this function satisfies the following axioms for any
scalar a and any choice of vectors �v, �w, �v1, �v2, �w1, and �w2.

1. bða�v; �wÞ ¼ bð�v;a�wÞ ¼ abð�v; �wÞ
2. bð�v1 þ �v2; �wÞ ¼ bð�v1; �wÞ þ bð�v2; �wÞ
3. bð�v; �w1 þ �w2Þ ¼ bð�v; �w1Þ þ bð�v; �w2Þ

That is, b is bilinear if it is linear in each parameter, taken
separately.

Let V be a real vector space in <n (V 2 <n) and consider that
the following vector set �e1;�e2; :::;�enf g is a basis set of <n. This
basis set permits us to write in unambiguous form any vectors
�x and �y of V, where ðx1; x2; :::; xnÞ 2 <n and ðy1; y2; :::; ynÞ 2 <n

are the coordinates of the vectors �x and �y, respectively. That is
to say,

�x ¼
Xn

i¼1

xi�ei ð3Þ

and

�y ¼
Xn

i¼1

yj�ej ð4Þ

Subsequently,

bð�x; �yÞ ¼ bðxi�ei; y
j�ejÞ ¼ xiyjbð�ei;�ejÞ ð5Þ

if we take aij as the nQn scalars bð�ei;�ejÞ, that is,

aij ¼ bð�ei;�ejÞ, to i ¼ 1,2, . . . ,n and j ¼ 1,2, . . . ,n ð6Þ

Table 2. Values of the atomic weights used for bilinear indices
ACHTUNGTRENNUNGcalculation.[55,72–74]

ID Atomic Mass [Da] VvdW [T3][a] P [T3][b] K[c]

H 1.01 6.709 0.667 2.2
B 10.81 17.875 3.030 2.04
C 12.01 22.449 1.760 2.55
N 14.01 15.599 1.100 3.04
O 16.00 11.494 0.802 3.44
F 19.00 9.203 0.557 3.98
Al 26.98 36.511 6.800 1.61
Si 28.09 31.976 5.380 1.9
P 30.97 26.522 3.630 2.19
S 32.07 24.429 2.900 2.58
Cl 35.45 23.228 2.180 3.16
Fe 55.85 41.052 8.400 1.83
Co 58.93 35.041 7.500 1.88
Ni 58.69 17.157 6.800 1.91
Cu 63.55 11.494 6.100 1.9
Zn 65.39 38.351 7.100 1.65
Br 79.90 31.059 3.050 2.96
Sn 118.71 45.830 7.700 1.96
I 126.90 38.792 5.350 2.66

[a] van der Waals volume. [b] Polarizability. [c] Electronegativity.
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Then

bð�x; �yÞ ¼
Xn

i;j

aijx
iyj ¼ X½ �TA Y½ � ¼ x1::: xn

� 	 a11 ::: ajn

::: ::: :::

an1 ::: ann

2
64

3
75

y1

..

.

yn

2
664

3
775 ð7Þ

As can be seen, the defined system of equations for b may
be written as a single matrix form [Eq. (7)] , for which [Y] is a
column vector (an nQ1 matrix) of the coordinates of �y in a
basis set of <n, and [X]T (a 1Qn matrix) is the transpose of [X] ,
where [X] is a column vector (an nQ1 matrix) of the coordi-
nates of �x in the same basis set of <n.

Finally, we introduce the formal definition of symmetric bi-
linear form. Let V be a real vector space and b be a bilinear
function in VQV. The bilinear function b is called symmetric if
bð�x; �yÞ ¼ bð�y; �xÞ; 8�x; �y 2 V .[60–65] Then,

bð�x; �yÞ ¼
Xn

i;j

aijx
iyj ¼

Xn

i;j

ajix
jyi ¼ bð�y; �xÞ ð8Þ

2.4. Nonstochastic and stochastic atom-based bilinear
ACHTUNGTRENNUNGindices: total definition

The kth nonstochastic and stochastic bilinear indices for a mol-
ecule, bkð�x; �yÞ and sbkð�x; �yÞ,[66] respectively, are computed from
these kth nonstochastic and stochastic graph-theoretical elec-
tronic-density matrices, Mk and Sk as shown in Equations (9)
and (10):

bkð�x; �yÞ ¼
Xn

i¼1

Xn

j¼1

kmijx
iyj ð9Þ

sbkð�x; �yÞ ¼
Xn

i¼1

Xn

j¼1

ksijx
iyj ð10Þ

for which n is the number of atoms in the molecule, and
x1,…,xn and y1,…,yn are the coordinates or components of the
molecular vectors �x and �y in a canonical basis set of <n.

The defined Equations (9) and (10) for bkð�x; �yÞ and sbkð�x; �yÞ
may also be written as the single matrix equations:

bð�x; �yÞ ¼ ½X�TMk½Y� ð11Þ
sbð�x; �yÞ ¼ ½X�TSk½Y� ð12Þ

in which [Y] is a column vector (an nQ1 matrix) of the coor-
dinates of �y in the canonical basis set of <n and [X]T is the
transpose of [X] , where [X] is a column vector (an nQ1 matrix)
of the coordinates of �x in the canonical basis of <n. Therefore,
if we use the canonical basis set, the coordinates [(x1,…,xn) and
(y1,…,yn)] of any molecular vectors (�x and �y) coincide with the
components of those vectors [(x1,…,xn) and (y1,…,yn)] . For that
reason, those coordinates can be considered as weights
(atomic labels) of the vertices of the molecular pseudograph,

because components of the molecular vectors are values of
some atomic property that characterizes each kind of atomic
nucleus in the molecule.

Notably, nonstochastic and stochastic bilinear indices are
symmetric and nonsymmetric bilinear forms, respectively.
Therefore, if in the following weighting scheme, M and V are
used as atomic weights to compute these MDs, two different
sets of stochastic bilinear indices, M�V sbk

H
ACHTUNGTRENNUNG(x,y) and V�M sbk

H
ACHTUNGTRENNUNG(x,y)

[because �xM��yV ¼6 �xV��yM], can be obtained, and only one
group of nonstochastic bilinear indices [M�V sbk

H
ACHTUNGTRENNUNG(x,y)= V�M sbk

H-
ACHTUNGTRENNUNG(x,y) because in this case, �xM��yV =�xV��yM] can be calculated.[66]

2.5. Nonstochastic and stochastic atom-based bilinear
ACHTUNGTRENNUNGindices: local (atomic, group, and atom-type) definition

Several year ago, Randić[67] proposed a list of desirable attrib-
utes for a MD. This list can be considered as a methodological
guide for the development of new topological indices (TIs).
One of the most important criteria is the possibility of defining
the descriptors locally. This attribute refers to the fact that the
index could be calculated not only for the molecule as a
whole, but also over certain fragments of the structure itself.

Occasionally the properties of a group of molecules are re-
lated more to a certain zone or fragment than to the molecule
as a whole. Thereinafter, the global definition never satisfies
the structural requirements needed to obtain a good correla-
tion in QSAR and QSPR studies. The local indices can be used
in certain problems such as:

*Research on drugs, toxics, or generally any organic mole-
cules with a common skeleton that is responsible for the
activity or property under study.

*The study of the reactivity of specific sites of a series of
molecules that can undergo a chemical reaction or enzy-
matic metabolism.

*The study of molecular properties such as spectroscopic
measurements that are obtained experimentally in a local
way.

*Any general case in which it is necessary to study not only
the molecule as a whole, but also some local properties of
certain fragments; then the definition of local descriptors
could be necessary.

Therefore, in addition to total bilinear indices computed for
the whole molecule,[66] a local-fragment (atomic, group, or
atom-type) formalism can be developed. These descriptors are
termed local nonstochastic and stochastic bilinear indices,
bkLð�x; �yÞ and sbkL �x; �yð Þ, respectively.[66] The definition of these
descriptors is as follows:

bkLð�x; �yÞ ¼
Xn

i¼1

Xn

j¼1

kmijLx
iyj ð13Þ

sbkLð�x; �yÞ ¼
Xn

i¼1

Xn

j¼1

ksijLx
iyj ð14Þ
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in which kmijL [ksijL] is the kth element of the row “i” and
column “j” of the local matrix Mk

L [Sk
L] . This matrix is extracted

from the Mk [Sk] matrix and contains information that refers to
the pairs of vertices (atomic nuclei) of the specific molecular
fragments and also of the molecular environment in the k
step. The matrix Mk

L [Sk
L] with elements kmijL [ksijL] is defined as

follows:

kmijL ½ksijL� ¼ kmij ½ksijL� if both vi and vj are atomic nuclei

contained within the molecular fragment,

¼ 1
2

kmij ½ksijL� if either vi or vj is an atomic nucleus

contained

within the molecular fragment,

¼ 0 otherwise

ð15Þ

These local analogues can also be expressed in matrix form
by the expressions:

bLð�x; �yÞ ¼ ½X�TMk
L½Y� ð16Þ

sbLð�x; �yÞ ¼ ½X�TSk
L½Y� ð17Þ

It should be mentioned that the scheme above follows the
spirit of a Mulliken population analysis of atomic net charg-
es.[68] It should be also pointed out that for every partitioning
of a molecule into Z molecular fragments, there will be Z local
molecular fragmental matrices. In this case, if a molecule is par-
titioned into Z molecular fragments, the matrix Mk [Sk] can be
correspondingly partitioned into Z local matrices Mk

L [Sk
L] , L=

1,…Z, and the kth power of matrix M [S] is exactly the sum of
the kth powers of the local Z matrices. In this way, the total
nonstochastic and stochastic bilinear indices are the sum of
the nonstochastic and stochastic bilinear indices, respectively,
of the Z molecular fragments:

bð�x; �yÞ ¼
XZ

L¼1

bkLð�x; �yÞ ð18Þ

sbð�x; �yÞ ¼
XZ

L¼1

sbkLð�x; �yÞ ð19Þ

Atomic, group, and atom-type bilinear fingerprints are spe-
cific cases of local bilinear indices.[66] Atomic bilinear indices,
bkLð�xi; �yiÞ and sbkLð�xi; �yiÞ, can be computed for each atom i in
the molecule and contain electronic and topological structural
information from all other atoms within the structure. The
values of atom-level bilinear indices for the common scaffold
atoms can be directly used as variables in seeking a QSPR/
QSAR model, as long as these atoms are numbered in the
same way in all molecules in the database.

In addition, the atom-type bilinear indices can also be calcu-
lated. In the same way as atom-type E-state values,[69] for all
data sets (including those with a common skeletal core as well
as those with very diverse structures), these novel local MDs
provide much useful information. This approach therefore pro-

vides the basis for application to a wider range of problems to
which the atomic bilinear indices formalism is applicable with-
out the need for superposition.[70,71] For this reason, the pres-
ent method represents a significant advantage over traditional
QSAR methods. The atom-type bilinear descriptors are calculat-
ed by adding the kth atomic bilinear indices for all atoms of
the same type in the molecule. This atom-type index lends
itself to use in a group-additive-type scheme, in which an
index appears for each atom type in the molecule. In the
atom-type bilinear indices formalism, each atom in the mole-
cule is classified into an atom type (fragment), such as �F,
�OH, =O, �CH3, and so on.[69–71] That is to say, each atom in the
molecule is categorized according to a valence-state classifica-
tion scheme including the number of attached H atoms.[69] The
atom-type descriptors combine three important aspects of
structural information: 1) collective electron and topological ac-
cessibility to the atoms of the same type (for each structural
feature: atom or hybrid group such as �Cl, =O, �CH2�, etc.),
2) the presence or absence of the atom type (structural fea-
tures), and 3) a count of the atoms in the atom-type sets.

Finally, these local MDs can be calculated by a functional
group in the molecule, such as heteroatoms (O, N, and S in all
valence states as well as including the number of attached
H atoms), hydrogen bonding to heteroatoms (O, N, and S in all
valence states), halogen atoms (F, Cl, Br, and I), all aliphatic
carbon chains (several atom types), all aromatic atoms (aro-
matic rings), and so on.[66] The group-level bilinear indices are
the sum of the individual atom-level bilinear indices for a par-
ticular group of atoms. For all data set structures, the kth
group-based bilinear indices provide important information for
QSAR/QSPR studies.

2.6. Sample calculation

It is useful to perform a calculation on a molecule to illustrate
the effect of structure on the values of atomic and global bilin-
ear indices. Thus, we use the 3-sulfanylisonicotinaldehyde mol-
ecule. The labeled (atom numbering) molecular structure of
this compound and the nonstochastic and stochastic (atom-
level, group, and atom-type as well as total) atom-based bilin-
ear indices are shown in Table 3.

3. Experimental Section

3.1. Computational strategies

Molecular fingerprints were generated by the interactive pro-
gram for molecular design and bioinformatic research TOMO-
COMD.[26] It is composed of four subprograms; each one allows
both drawing the structures (drawing mode) and calculating
molecular 2D/3D descriptors (calculation mode). The modules
are named CARDD (Computer-Aided “Rational” Drug Design),
CAMPS (Computer-Aided Modeling in Protein Science), CANAR
(Computer-Aided Nucleic Acid Research) and CABPD (Com-
puter-Aided Bio-Polymers Docking). The CARDD module was
selected for drawing all structures and for the computation of
nonstochastic and stochastic bilinear indices. The main steps
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for the application of this method in QSAR/QSPR and for drug
design can be briefly summarized as follows:

1. Drawing of the molecular pseudographs for each mole-
cule in the data set using the drawing mode.

2. Use of the appropriate weights to differentiate the molec-
ular atoms. The weights used in this study are those previ-
ously proposed for the calculation of the DRAGON de-
scriptors,[55,72,73] that is, atomic mass (M), atomic polariza-
bility (P), atomic Mulliken electronegativity (K), and
van der Waals atomic volume (V).[55] The values of these
atomic labels are shown in Table 2.[55,72–74]

3. Computation of the total and local (atom and atom-type)
bilinear indices of the molecular pseudograph’s atom ad-

jacency matrix can be car-
ried out in the software cal-
culation mode, where one
can select the atomic prop-
erties and the descriptor
family before calculating
the molecular indices. This
software generates a table
in which the rows corre-
spond to the compounds
and the columns corre-
spond to the atom-based
(both total and local) bilin-
ear maps or other MD
family implemented in this
program.

4. Development of a QSPR/
QSAR equation by using
several multivariate analyti-
cal techniques, such as
linear discrimination analy-
sis. That is to say, one can
find a quantitative relation-
ship between an activity A
and the bilinear finger-
prints having, for example,
the following appearance:

A ¼ a0b0ðx,yÞ þ a1b1ðx,yÞ
þa2b2ðx,yÞ þ . . .þ akbkðx,yÞ þ c

ð20Þ

where A is the measured
activity, bkACHTUNGTRENNUNG(x,y) are the kth
nonstochastic total bilinear
indices, and the ak values
are the coefficients ob-
tained by the linear regres-
sion analysis.

5. Test of the robustness and
predictive power of the
QSPR/QSAR equation by

using internal (leave-one-out (LOO)) and external (using a
test set and an external predicting set) validation tech-
niques.

The following descriptors were calculated in this study:

1. bkACHTUNGTRENNUNG(x,y) and bk
H
ACHTUNGTRENNUNG(x,y) are the kth total bilinear indices not

considering and considering H atoms in the molecule, re-
spectively.

2. bkLACHTUNGTRENNUNG(xE,yE) and bkL
H
ACHTUNGTRENNUNG(xE,yE) are the kth local (group=heteroa-

toms: S, N, O) bilinear indices not considering and consid-
ering H atoms in the molecule, correspondingly. These
local descriptors are putative molecular charge, dipole
moment, and H-bonding acceptors.

Table 3. Values of atom-based bilinear indices for 3-sulfanylisonicotinaldehyde.

kth Nonstochastic MDs, bkLð�xi ; �yiÞ[a]

k=0 k=1 k=2 k=3 k=8 k=15

Atom (i) Atom-level bilinear indices
N1 17,1589 69,30704 207,92112 677,6482 217716,1986 711876800,9
C2 39,51024 105,09455 382,76839 1173,27708 380330,8902 1242200889
C3 39,51024 172,57929 475,22504 1557,467468 498904,5116 1625489636
C4 39,51024 158,04096 526,894748 1699,867938 545797,7789 1784733323
C5 39,51024 118,53072 381,66623 1237,280798 406509,5989 1327324524
C6 39,51024 105,09455 328,71982 1025,6697 337449,5327 1105114810
C7 39,51024 77,743778 316,08192 837,86986 288840,4172 930027508,4
O8 9,218188 38,233538 75,10629 305,868304 85899,64937 284074052,7
S9 70,8441 54,04857 232,98981 647,3843 213952,7799 698815935,8

Total (Sum) 334,282628 898,672996 2927,373368 9162,333648 2975401,357 9709657480

Group (i) Group bilinear indices
Heteroatoms[b] 97,221188 161,589148 516,01722 1630,900804 517568,6278 1694766789

Atom-type (i) Atom-type bilinear indices
CH-arom[c] 118,53072 328,71982 1093,15444 3436,227578 1124290,022 3674640223

kth Stochastic MDs, sbkLð�xi; �yiÞ[a]

k=0 k=1 k=2 k=3 k=8 k=15

Atom (i) Atom-level bilinear indices
N1 17,1589 23,10234667 22,34781083 23,66748208 23,89914186 24,01863153
C2 39,51024 33,38525667 40,80307944 39,00990209 38,9415613 38,95862823
C3 39,51024 60,9142225 44,90684156 47,06658972 45,29450781 45,13795589
C4 39,51024 42,80276 47,40669467 47,62823907 47,72612389 47,70941996
C5 39,51024 37,86398 37,79391122 39,18662953 40,21791136 40,32910683
C6 39,51024 35,03151667 35,08198711 34,64609483 36,44270378 36,7396616
C7 39,51024 27,639906 37,134922 32,10412486 34,42791207 33,95447149
O8 9,218188 16,116086 10,803039 14,98191176 13,79473544 14,04362415
S9 70,8441 29,6352825 42,1269325 34,8188677 34,3736933 34,24319914

Total (Sum) 334,282628 306,491357 318,4052183 313,1098416 315,1182908 315,1346988

Group (i) Group bilinear indices
Heteroatoms[b] 97,221188 68,85371517 75,27778233 73,46826154 72,0675706 72,30545482

Atom type (i) Atom-type bilinear indices
CH-arom[c] 118,53072 106,2807533 113,6789778 112,8426264 115,6021765 116,0273967

[a] Calculation development using van der Waals volume (V) and polarizability (P) (see Table 2) as combinations
(pairs) of two atom-label chemical properties from our weighting schemes. [b] Sum of local-index values for N,
O, and S atoms. [c] Sum of local-index values for C atoms 2, 5, and 6.
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3. bkL
H(xE�H,yE�H) are the kth local (group=H atoms bonding

to heteroatoms: S, N, O) bilinear indices considering
H atoms in the molecule. These local descriptors are puta-
tive H-bonding donors (H-bonding capacity), lipophilicity,
and so on.

4. The kth total [sbkACHTUNGTRENNUNG(x,y) and sbk
H
ACHTUNGTRENNUNG(x,y)] and atom-type [sbk ACHTUNGTRENNUNG(xE,yE),

sbk
H
ACHTUNGTRENNUNG(xE,yE), and sbk

H(xE�H,yE�H)] stochastic bilinear indices
were also computed.

3.2. Database selection

The general data set used in this study consists of 658 organic
compounds of great structural variation, 246 of which have re-
ported activity against tyrosinase; the remainder are inactive.
The database of active compounds was chosen considering a
representation of most of the different inhibition modes in the
case of the compounds with tyrosinase inhibitory activity. It in-
cludes compounds that belong to different subsystems such
as derivatives of chalcone,[75,76] new phenolic compounds,[77]

azobenzene derivatives,[78] kojic acid tripeptide library mem-
bers,[79] glycyrrhetinic acid derivatives,[80] novel N-substituted N-
nitrosohydroxylamines,[81,82] catechins,[83] gentisic acid esters,[10]

hydroxystilbene compounds,[84] benzaldoximes,[85] cinnamic
acid derivatives,[86,87] vitamin B6 compounds,[88] flavonoids,[89]

phlorotannins,[90] disubstituted oxadiazole analogues,[14] longi-
folene derivatives,[91] androstadienone derivatives,[15] steroids,[92]

and so on. Figure 1 shows some representative compounds
from these data. The names of compounds in the database to-
gether with their experimental data taken from the literature
are given in Table 4. The molecular structures of these 246 ty-
rosinase inhibitors are listed in Table 1 of the Supporting Infor-
mation.

In this sense, it is remarkable that the wide variability of
drugs and mechanisms of inhibition of active compounds in
the training and prediction sets assures adequate extrapolation
power and increases the possibilities of the discovery of new
lead compounds with novel mechanisms of tyrosinase inhibi-
tion, one of the most critical aspects in the construction of
non-congeneric data. In this way, this dataset provides a useful

Figure 1. Some examples of the molecular families of tyrosinase inhibitors studied herein.
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Table 4. Databases of tyrosinase inhibitors taken from different sources.

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

1 Kojic acid 29.71 Mu l-D [117]
22.94 35 l-T [79]
60
500
500

Mh l-D [80]

934.5 Mh C [118]
Mh l-D [82]
Mh [81]

4.36 Ma [10]
40.1 76.7 (100) Mh l-T [84]
>100 43.0 (100) Mu l-T [84]
9.85 Mh l-T [119]
280 Mh l-D [120]
22 Mh l-D [85]

8.66 l-T [76]
22 l-D [76]
27 l-D [121]
235 Mh l-D [122]

64 (0.14) l-T [3]
72 (0.14) l-D [3]

[123]
small l-D [124]

250 l-D [125]
10 Mh l-D [12]
131 Mu l-D [12]
410 Hu l-D [12]
3.51 [126]
79.51 l-D [127]
4.41 Mh l-T [128]

50 (1) Th l-D [129]
24 (0.1) Th l-D [129]

16.67 [14]
2 Arbutin Mh [130]

54.72 Ma [10]
5.51 Mh l-T [119]
8400 Mh l-D [120]
24000 l-D C [131]
790 Mh l-T [131]

14700 Mh l-D [131]
24000 l-D [122]

13 (90) Mh l-T [87]
0 (90) Mh l-D [87]

17000 l-D [125]
C [125]

11130 Mh l-D [12]
205 Mu l-D [12]
3020 Hu l-D [12]
41.13 Mh l-T [128]

3 l-Mimosine [123]
Mh [81]

small l-D [124]
[132]

3.68 [14]
4 Hydroquinone 25.88 Mh l-T [83]

65.39 Ma [10]
4500 l-D [122]
4500 l-D [125]

[133]
5 l-Tropolone Mh l-D [82]

Mh [81]
0.13 Mh l-D [85]

[123]
100 (100) [124]
60 (1000) Pa l-D [134]
15 (200) Pa l-D [134]

1 Mh [135]
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Table 4. (Continued)

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

Mh [136]
6 Ascorbic acid 23 (90) Mh l-T [87]

34 (90) Mh l-D [87]
28.38 [126]

57 (50) [137]
39 (100) [137]

30
300
500

Mh l-D [80]

7 Oxyresveratrol N [117]
1 95 Mh l-D [138]

1.2 97.3 Mh l-T [84]
52.7 63.3 Mu l-T [84]
1 l-D N [125]

8 Quercetin 130 38.6 Mh l-D C [139]
[123]

50 29 Mh l-D C [89]
9 Benzoic acid [140]

[141]
710 Mh l-D C [86]

14 Ne l-D C [142]
[135]
[143]

10 Benzaldehyde 830 Mh l-D N [86]
Mh l-D C [144]

11 Cupferron 1.1 Mh l-D [81]
Mh l-D C [82]

0.52 0.20 Mh l-T C [145]
0.84 0.48 Mh l-D C [145]

12 Aloesin N [125]
193 Mh l-D [12]
167 Mu l-D [12]
710 Hu l-D [12]

13 trans-Resveratrol Mu [117]
Ca [146]

155 [3]
250 l-D N [125]
155 78 Mh [138]
54.6 63.8 Mh l-T [84]
100 32.7 Mu l-T [84]

14 Anisaldehyde Mh l-D C [144]
380 Mh l-D N [86]

l-D [144]
320 Mh l-D N [147]

15 Cinnamic acid Mh [130]
700 Mh l-D M [86]

16 Gnetol 99 Mu l-D [117]
17 Dihydrognetol 18 Mu l-D [117]
18 3,3’,4-Hydroxy-trans-stilbene 87.7 74.3 Mu l-D [117]
19 3,3’,4,4’-Hydroxy-trans-stilbene 29.1 98.3 Mu l-D [117]
20 3-Amino-l-tyrosine 14 [140]

[148]
21 2-Aminophenol 2 [140]
22 Isoliquiritigenin 8.1 67 (50) [75]
23 4-Hydroxychalcone 21.8 71 (50) [75]
24 Butein 29.3 77 (50) [75]
25 4’-Hydroxychalcone 11 (50) [75]
26 2’,4’-Dihydroxychalcone 14 (50) [75]
27 2’,4-Dihydroxychalcone 10 (50) [75]
28 trans-4-Azobenzene carboxylic acid 67 (1000) Mh [78]
29 cis-4-Azobenzene carboxylic acid 86 (1000) Mh [78]
30 trans-4,4’-Azobenzene dicarboxylic acid 72 (1000) Mh [78]
31 cis-4,4’-Azobenzene dicarboxylic acid 53 (1000) Mh [78]
32 Castanospermine 2.64 50 [149]
33 Deosynojirimycin 50 [149]
34 Ko-YGC 52.5 Mh l-T [79]
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Table 4. (Continued)

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

35 Ko-YGV 54 Mh l-T [79]
36 Ko-YGE 55 Mh l-T [79]
37 Ko-YGT 52 Mh l-T [79]
38 Ko-YGL 55 Mh l-T [79]
39 Ko-YGW 58 Mh l-T [79]
40 Ko-YGF 57 Mh l-T [79]
41 Ko-YGH 57 Mh l-T [79]
42 Ko-YGN 52 Mh l-T [79]
43 Ko-YGD 54 Mh l-T [79]
44 Ko-YGG 57 Mh l-T [79]
45 Ko-YIG 50 Mh l-T [79]
46 Ko-YYG 60 Mh l-T [79]
47 Ko-YSG 55 Mh l-T [79]
48 Ko-YMG 56 Mh l-T [79]
49 Ko-YQG 54 Mh l-T [79]
50 Ko-YRG 61 Mh l-T [79]
51 Ko-YHG 52 Mh l-T [79]
52 Ko-YNG 53 Mh l-T [79]
53 Ko-YDG 54 Mh l-T [79]
54 Ko-FIY 88 Mh l-T [79]
55 Ko-FRY 91 Mh l-T [79]
56 Ko-FYY 0.39 93 Mh l-T [79]
57 Ko-FWY 0.24 95 Mh l-T [79]
58 Ko-FFY 0.33 94 Mh l-T [79]
59 Ko-KWY 67 Mh l-T [79]
60 Ko-KRY 59 Mh l-T [79]
61 Ko-KKY 66 Mh l-T [79]
62 Ko-KIY 65 Mh l-T [79]
63 Ko-FWW 6.17 Mh l-T [79]
64 Ko-FWF 4.48 Mh l-T [79]
65 Ko-FWI 2.18 Mh l-T [79]
66 Ko-FWD 2.13 Mh l-T [79]
67 Ko-WWY 0.78 Mh l-T [79]
68 500

100
70

Mh l-D [80]

69 500
80
35

Mh l-D [80]

70 500
150
100

Mh l-D [80]

71 Glabridin Mh [80]
0.09 l-T [76]
0.09 l-T [3]
3.94 l-D [3]

72 N-Cyclopentyl-N-nitrosohydroxylamine 0.6 Mh l-D N [82]
0.6 Mh l-D [81]

73 N-Benzyl-N-nitrosohydroxylamine 3.0 Mh l-D [82]
3.0 Mh l-D [81]

74 13.7 Mh l-D N [82]
75 19.2 Mh l-D M [82]
76 13.1 Mh l-D M [82]
77 9.7 Mh l-D M [82]
78 15.8 Mh l-D M [82]
79 20.3 Mh l-D N [82]
80 11.6 Mh l-D N [82]
81 23.8 Mh l-D N [82]
82 1.3 Mh l-D [81]
83 23.5 Mh l-D [81]
84 273 Mh l-D [81]
85 139 Mh l-D [81]
86 1.2 Mh l-D [81]
87 1.1 Mh l-D [81]
88 1.5 Mh l-D [81]
89 2.2 Mh l-D [81]
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Table 4. (Continued)

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

90 19.3 Mh l-D [81]
91 280 Mh l-D [81]
92 220 Mh l-D [81]
93 Dopastin 20 Mh l-D [81]
94 46 Mh l-D [81]
95 (�)-Epigallocatechin-3-O-gallate 34.10 58 Mh l-T [83]
96 (+)-Gallocatechin-3-O-gallate 17.34 72 Mh l-T [83]
97 (�)-Epicatechin-3-O-gallate 34.58 63 Mh l-T [83]
98 (�)-Epigallocatechin 40 Mh l-T [83]
99 Magnesium l-ascorbyl-2-phosphate 71.84 Ma [10]
100 6.66 Ma [10]
101 10.75 Ma [10]
102 14.53 Ma [10]
103 29.30 Ma [10]
104 60.88 Ma [10]
105 89.19 Ma [10]
106 50.46 Ma [10]
107 3,5-Dihydroxy-4’-methoxystilbene 252 57 Mh [138]

78.4 57.9 Mh l-T [84]
100 3.7 Mu l-T [84]

108 3,4’-Dimethoxy-5-hydroxystilbene 490 50 Mh [138]
100 0 Mh l-T [84]
100 2.3 Mu l-T [84]

109 Piceid 500 23 Mh
100 10.2 Mh l-T [84]
100 24.0 Mu l-T [84]

110 Rhapontigenin 76.2 58.7 Mh l-T [84]
100 2.3 Mu l-T [84]

111 Rhaponticin 100 0 Mh l-T [84]
100 7.7 Mu l-T [84]

112 Kurarinone 1.04 Mh l-T N [119]
113 Kushnol F 2.12 Mh l-T [119]
114 4-Hydroxyanisol 12.08 Mh l-T [119]

[131]
[150]

115 2-Hydroxy-4-methoxybenzaldehyde 30 Mh l-D [151]
116 Cuminaldehyde 50 Mh l-D [151]

120 Mh l-T C [144]
9 Mh l-D C [144]

33.74 Mh l-D N [144]
117 820 Mh l-D [151]
118 320 Mh l-D [151]
119 330 Mh l-D [151]
120 Artocarbene 2.45 Mh l-T [76]
121 Chlorophorin 2.6 Mh l-T [76]
122 Norartocarpanone 1.76 Mh l-T [76]
123 4-Propylresorcinol 0.91 Mh l-T [76]
124 3,4-Dihydroxybenzonitrile 45 Mh l-D [76]

45 Mh l-D [76]
125 3,4,2,4-trans-stilbene 1.5 Mh l-T [76]
126 29.3 Mh l-T [76]

>100 Mh l-D [76]
127 0.2 Mh l-T [76]

7.5 Mh l-D [76]
128 31.68 Mh l-T [76]

>100 Mh l-D [76]
129 0.02 Mh l-T [76]

90 Mh l-D [76]
130 Artogomezianol 68 Mh l-D [121]
131 Andalasin 38 Mh l-D [121]
132 Crocusatins H 870 Mh l-D [122]
133 Crocin-1 140 Mh l-D [122]
134 Crocin-3 960 Mh l-D [122]
135 3,4-Dihydroxycinnamic acid 970 Mh l-D N [86]
136 4-Hydroxy-3-methoxycinnamic acid 330 Mh l-D N [86]
137 Anisic acid 680 Mh l-D N [86]

ChemMedChem 2007, 2, 449 – 478 C 2007 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim www.chemmedchem.org 461

Discovery of Tyrosinase Inhibitors

www.chemmedchem.org


Table 4. (Continued)

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

600 603 l-D N [152]
138 2-Methoxycinnamic acid 340 Mh l-D N [86]
139 3-Methoxycinnamic acid 350 Mh l-D N [86]
140 4-Methoxycinnamic acid 340 Mh l-D N [86]
141 Kaempferol 230 Mh. l-D [153]
142 Glabrene 8.1 l-T [3]

7600 l-D [3]
143 Pyridoxine 30 5200 Mh l-D M [88]
144 Pyridoxamine 38 4300 Mh l-D M [88]
145 Pyridoxal 30 Mh l-D [88]
146 Pyridoxamine-5’-phosphate 30 Mh l-D [88]
147 Protocatechuic acid methyl ester 280 75.4 (0.5) Mh l-T [154]
148 Protocatechuic acid 420 60 (0.5) Mh l-T [154]
149 m-Coumaric acid [155]
150 3-Caffeoylquinic acid 27 (90) Mh l-T [87]

21 (90) Mh l-D [87]
151 4-Caffeoylquinic acid 25 (90) Mh l-T [87]

22 (90) Mh l-D [87]
152 5-Caffeoylquinic acid 26 (90) Mh l-T [87]

20 (90) Mh l-D [87]
153 5-Feroloylquinic acid 40 (90) Mh l-T [87]

23 (90) Mh l-D [87]
154 3,4-Dicaffeoylquinic acid 51 (90) Mh l-T [87]

51 (90) Mh l-D [87]
155 3,5-Dicaffeoylquinic acid 48 (90) Mh l-T [87]

59 (90) Mh l-D [87]
156 4,5-Dicaffeoylquinic acid 45 (90) Mh l-T [87]

56 (90) Mh l-D [87]
157 Caffeic acid 28 (90) Mh l-T [87]

25 (90) Mh l-D [87]
158 Fisetin 130 154 Mh l-D C [89]
159 3,7,4’-Trihydroxyflavone 270 410 Mh l-D C [89]
160 Morin 720 103 Mh l-D C [89]
161 Luteolin 240 Mh l-D U [89]
162 Apigenin 150 20 (150) Mh l-D [89]
163 Galangin 101 58 Mh l-D C [89]
164 50 l-T [156]

97 l-D [156]
165 Diethyldithiocarbamate 100 l-D [124]

100 (1) [129]
76 (0.1) [129]

166 Phenylthiourea 100 l-D [124]
57 (50) [137]

167 2-Mercaptobenzothiazole 3 Mh T [135]
168 5.87 Mh M N [157]
169 1.31 Mh M N [157]
170 Phloroglucinol 73.58 2.3Q10�4 Mh l-T C [128]
171 Eckstolonol 34.02 3.1Q10�4 Mh l-T C [128]
172 Eckol 8.91 1.9Q10�5 Mh l-T N [128]
173 Phlorofucofuroeckol 29.47 1.4Q10�3 Mh l-T N [128]
174 Dieckol 0.29 1.5Q10�5 Mh l-T N [128]
175 HPABS 7.17 l-T C [158]
176 Gluthatione 86 (1) Th l-D [129]

38 (0.1) Th l-D [129]
177 b-Mercaptoethanol 100 (1) Th l-D [129]

100 (0.1) Th l-D [129]
178 Protocatechualdehyde 65.74 1.1 Mh l-T C [159]
179 5.15 Mh l-D [14]
180 3.18 Mh l-D [14]
181 5.23 Mh l-D [14]
182 6.04 Mh l-D [14]
183 2.18 Mh l-D [14]
184 3.29 Mh l-D [14]
185 4.05 Mh l-D [14]
186 3.98 Mh l-D [14]
187 10.40 Mh l-D [14]
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Table 4. (Continued)

Compound[a] IC50 [mm][b] Inhibition [%][c] Ki [mm][d] Source[e] Substrate[f] I.T.[g] Ref.

188 3.23 Mh l-D [14]
189 8.71 Mh l-D [14]
190 5.16 Mh l-D [14]
191 7.18 Mh l-D [14]
192 7.82 Mh l-D [14]
193 7.28 Mh l-D [14]
194 6.21 Mh l-D [14]
195 6.43 Mh l-D [14]
196 7.81 Mh l-D [14]
197 1.36 Mh l-D [160]
198 11.68 Mh l-D [160]
199 8’-epi-Cleomiscosin A 1.33 Mh l-D [16]
200 256.97 Mh l-D [16]
201 18.69 Mh l-D [16]
202 15.69 Mh l-D [16]
203 8.65 Mh l-D [16]
204 64 Mh l-D [85]
205 3,4-Dihydroxybenzaldoxime 18 Mh l-D [85]
206 3-Hydroxy-4-methoxybenzaldoxime 4.6 Mh l-D [85]
207 3,4,5-Trihydroxybenzaldoxime 20.2 Mh l-D [85]
208 4-Hydroxy-3-methoxybenzaldoxime 2.3 Mh l-D [85]
209 3-Ethoxy-4-hydroxybenzaldoxime 3.5 Mh l-D [85]
210 4-Hydroxybenzaldoxime 25 Mh l-D [85]
211 4-Methoxybenzaldoxime 56 Mh l-D [85]
212 3,4-Dihydroxybenzaldehyde-O-ethyloxime 0.3 Mh l-D [85]
213 3,4-Dihydroxybenzaldehyde-O-(4-methylbenzyl)-oxime 3 Mh l-D [85]
214 3-Hydroxy-4-methoxybenzaldehyde-O-ethyloxime 18 Mh l-D [85]
215 3,4,5-Trihydroxybenzaldehyde-O-ethyloxime 380 Mh l-D [85]
216 4-Hydroxy-3-methoxybenzaldehyde-O-ethyloxime 4.2 Mh l-D [85]
217 3-Ethoxy-4-hydroxybenzaldehyde-O-ethyloxime 14 Mh l-D [85]
218 4-Hydroxybenzaldehyde-O-ethyloxime 43 Mh l-D [85]
219 4-Hydroxy-3-methylbenzaldehyde-O-ethyloxime 124 Mh l-D [85]
220 3,5-Dimethyl-4-hydroxybenzaldehyde-O-ethyloxime 500 Mh l-D [85]
221 620 Mh l-D [85]
222 520 Mh l-D [91]
223 51 Mh l-D [91]
224 101 Mh l-D [91]
225 9.64 Mh l-D [91]
226 6.68 Mh l-D [91]
227 14.05 Mh l-D [91]
228 22.03 Mh l-D [91]
229 7.45 Mh l-D [91]
230 68.79 Mh l-D [91]
231 5.79 Mh l-D [91]
232 9.77 Mh l-D [91]
233 2.70 Mh l-D [91]
234 (+)-Androst-4-ene-3,17-dione 3.68 Mh l-D [15]
235 Androsta-1,4-diene-3,17-dione 6.42 Mh l-D [15]
236 17b-Hydroxyandrosta-1,4-dien-3-one 139.67 Mh l-D [15]
237 11a-Hydroxyandrost-4-ene-3,17-dione 3.56 Mh l-D [15]
238 17b,11a-Dihydroxyandrost-4-en-3-one 1.25 Mh l-D [15]
239 2.61 Mh l-D [77]
240 1.85 Mh l-D [77]
241 0.40 Mh l-D [77]
242 Esculetin 43 Mh l-D C [161]
243 Lappaconitine 93.33 Mh l-D [162]
244 Stigmast-5-ene-3b,26-diol 2.39 Mh l-D [92]
245 Stigmast-5-ene-3b-ol 5.25 Mh l-D [92]
246 Campesterol 8.90 Mh l-D [92]

[a] Capital letters refer to the amino acid code. The molecular structures of these 246 tyrosinase inhibitors is given in Table 1 of the Supporting Information.
[b] Minimum inhibitory concentration data gathered at: boldface, 10 min; italics, 60 min; underline, 120 min. [c] Percent enzymatic inhibition (values in pa-
rentheses: concentration of substrate used [mm]). [d] Inhibition constant values. [e] Tyrosinase sources: Mh=mushroom, Mu=murine, Ma=mammalian,
Ca=carignan, Ne=Neurospora sp. , Pa=pear, Hu=human, Th=Thermomicrobium roseum. [f] Substrates used in assays: l-D=l-DOPA, l-T=l-tyrosine, M=

4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat), TBC=4-tert-butylcatechol, T= tyramine. [g] I.T.= inhibition type: C, competitive; N, noncompetitive; U,
uncompetitive; M, mixed.
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tool for scientific research in synthesis, natural product chemis-
try, theoretical chemistry, and other areas related to the field of
tyrosinase inhibitors.

On the other hand, 412 compounds having different clinical
uses such as antivirals, sedative/hypnotics, diuretics, anticon-
vulsants, hemostatics, oral hypoglycemics, anti-hypertensives,
antihelminthics, and anticancer compounds were selected for
the set of inactive compounds through random selection,
guaranteeing great structural variability as well. All these com-
pounds were taken from the Negwer Handbook,[93] in which
their names, synonyms, and structural formulas can be found.

The classification of these organic compounds as ’inactive’
(non-inhibitors of tyrosinase) does not guarantee that all are
truly so; some of them may have inhibitory activity toward ty-
rosinase that is undetected. This problem can be reflected in
the results of classification for the series of inactive com-
pounds.[94]

Therefore, the developed LDA-based QSAR models can clas-
sify some of these compounds as inhibitors against tyrosinase,
helping with the identification of new compounds, among
drugs from large datasets with other pharmacological uses. In
our case, we carried out a virtual screening experiment in an-
other part of this work. To split the database into training and
prediction series, two k-means cluster analyses (k-MCA) were
carried out for both active and inactive compounds to design,
in a rational representative way, the training (learning) and pre-
diction (test) series.[95,96]

3.3. Chemometric methods

3.3.1. Cluster analysis

Cluster analysis (CA) is the name of a group of methods used
to recognize similarities among cases (objects) or among varia-
bles and single out some categories as a set of similar cases
(or variables).[18] This CA comprehends a number of different
’classification algorithms’ and it allows organization of the data
into subsystems. These algorithms are grouped into two cate-
gories : hierarchical clustering and partitional (nonhierarchical)
clustering. Hierarchical clustering rearranges objects in a tree
structure (joining clustering) in an agglomerative (bottom-up)
procedure. On the other hand, partitional clustering assumes
that the objects have nonhierarchical characters.[18,95–97]

The most frequently used cluster algorithms are the k-mean
cluster algorithm (k-MCA) and the Jarvis–Patrick algorithm
(also known as k-nearest-neighbor cluster algorithm; k-NNCA);
in our case, to design the training and test series and to dem-
onstrate the great structural variability of the present database,
we carried out both kinds of cluster analyses (k-MCA and k-
NNCA) for both the active and inactive series of com-
pounds.[18,96–98] The number of members in each cluster and
the standard deviation (SD) of the variables in the cluster (kept
as low as possible) were taken into account to have an accept-
able statistical quality of data partition in clusters. The values
of the SD between and within clusters of the respective Fisher
ratio and their p-level of significance, were also exam-
ined.[18, 95–97] Finally, before carrying out the cluster processes,

all variables were standardized. In standardization, all values of
selected variables (MDs) were replaced by standardized values,
which are computed as follows: standard score= (raw score �
mean)/SD.

3.3.2. Linear discriminant analysis

The aim of linear discriminant analysis (LDA), a heuristics algo-
rithm capable of distinguishing among two or more categories
of objects, is to find a linear function allowing one to discrimi-
nate between active and inactive compounds.[98] LDA was se-
lected between many statistical methods to get
classification functions owing to its simplicity.[99] LDA is one of
the most currently used nowadays; moreover, its use in
drug discovery and design has been widely de-
scribed.[17,22,24,28, 31–33,35,36, 38,42,43, 45–48,94,100–102] The LDA was carried
out with STATISTICA software.[97] The considered tolerance pa-
rameter was the default value for minimal acceptable toler-
ance, which is 0.01. A forward stepwise search procedure was
fixed as the strategy for variable selection; the selection
method by forward stepwise exhibited the majority of applica-
tions in drug design. The construction process of the model
occurs through many steps in the following way: the variables
enter and are evaluated by STATISTICA in the model, the varia-
ble with greatest contribution to discriminate between groups
is included in the model, and then STATISTICA continues with
the next step.

The principle of parsimony (Occam’s razor) was taken into
account as a strategy for model selection. In this case simplici-
ty is loosely equated with the number of parameters in the
model. In this context, we selected the model with a high stat-
istical significance but having as few parameters (ak) as possi-
ble. The quality of the models was determined by examining
Wilks’ l parameter (U statistic), the value of which in the over-
all discrimination can range from 0 (perfect discrimination) to 1
(no discrimination) and the square Mahalanobis distance (D2),
which indicates the separation of the respective groups, show-
ing whether the model possesses an appropriate discriminato-
ry power for differentiating between the two corresponding
groups. The Fisher ratio (F), the corresponding p level [p(F)] ,
and the percentage of good classification in the training and
test sets were also examined.

The classification of cases was carried out by means of the
posterior classification probabilities. Using the Mahalanobis dis-
tance values to do the classification, one can now derive prob-
abilities. The probability that a case belongs to a particular
group is basically proportional to the Mahalanobis distance
from that group centroid, and then it can be said that posteri-
or probability is that, based on our knowledge of the values of
other variables, with which the respective case belongs to a
particular group.[97]

The biological activity was coded by a dummy variable
“Class”. This variable indicates the presence of either an active
compound (Class=1) or an inactive compound (Class=�1). By
using the models, one compound can then be classified as
active if %DP>0, being %DP= [P ACHTUNGTRENNUNG(Active)�P ACHTUNGTRENNUNG(Inactive)]100, or
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otherwise as inactive. PACHTUNGTRENNUNG(Active) and PACHTUNGTRENNUNG(Inactive) are the proba-
bilities with which the equations classify a compound as active
or inactive, respectively.

The statistical robustness and predictive power of the ob-
tained model were assessed using a prediction (test) set. Final-
ly, the calculation of percentages of global good classification
(accuracy), sensibility, specificity (also known as “hit rate”), false
positive rate (also known as “false alarm rate”), and Matthews
correlation coefficient (C) in the training and test sets, together
with the linear discriminant canonical statistics : canonical re-
gression coefficient (Rcan) and chi-square (c2) permitted the as-
sessment of the model.[103]

3.3.3. Orthogonalization of descriptors

The interrelation among the MDs makes the interpretation of
the QSAR model difficult. To overcome this, we examined the
orthogonalization of the molecular descriptors introduced by
Randić and others several years ago, as a way to improve the
statistical interpretation of the models by using interrelated in-
dices.[102–108] It is well known that the interrelation among the
different descriptors can result in highly unstable regression
coefficients, which makes it impossible to know the relative
importance of an index included in a model.

However, in some cases, strongly interrelated descriptors
can enhance the quality of a model because the small fraction
of a descriptor that is not reproduced by its strongly interrelat-
ed pair can provide positive contributions to modeling.[102–108]

The main philosophy of this approach is to avoid the exclusion
of descriptors on the basis of their colinearity with other varia-
bles included in the model. In addition, the coefficients of the
QSAR model based on orthogonal descriptors are stable to the
inclusion of novel descriptors, which permits interpretation of
the correlation coefficient and to evaluate the role of individual
fingerprints in the QSAR model.

In this study the Randić method of orthogonalization was
used.[102–108] As a first step, an appropriate order of orthogonali-
zation was considered following the order with which the vari-
ables were selected in the forward stepwise search procedure
of the statistical analysis.[108] The first variable (V1) is taken as
the first orthogonal descriptor 1O(V1), and the second one (V2)
is orthogonalized with respect to it [2O(V2)] . The residual of its
correlation with 1O(V1) is that part of the descriptor V2 not re-
produced by 1O(V1). Similarly, from the regression of V3 versus
1O(V1), the residual is the part of V3 that is not reproduced by
1O(V1), and it is labeled 1O(V3). The orthogonal descriptor 3O(V3)
is obtained by repeating this process to make it also orthogo-
nal to 2O(V2). The process is repeated until all variables are
completely orthogonalized, and the orthogonal variables are
then used to obtain the new model.

The data set was standardized before the orthogonalization
process because the different MDs included herein used entire-
ly “different types of scales”. This process to proportionate
each variable has a mean of 0 and a standard deviation of 1.

3.4. Chemical methods

The isolation and characterization of seven cycloartane com-
pounds, their biological studies, and cross-references has been
reported by other members of our research team.[109]

3.5. In vitro determination of tyrosinase inhibitory activity

The tyrosinase inhibition assay was performed with kojic acid
and l-mimosine (both from Sigma Chemical, USA) as standard
inhibitors of tyrosinase in a 96-well microplate format using a
SpectraMax 340 microplate reader (Molecular Devices, CA,
USA) according to the method developed by Hearing.[110] Brief-
ly, the compounds were first screened for the o-diphenolase in-
hibitory activity of tyrosinase using l-DOPA as substrate. All
the active inhibitors from the preliminary screening were sub-
jected to IC50 studies. Compounds were dissolved in methanol
to a concentration of 2.5%. Thirty units of mushroom tyrosi-
nase (28 nm, Sigma Chemical, USA) were first preincubated
with the test compounds in 50 nm sodium phosphate buffer
(pH 6.8) for 10 min at 25 8C. Then the l-DOPA (0.5 mm) was
added to the reaction mixture, and the enzymatic reaction was
monitored for 10 min by measuring the change in absorbance
at 475 nm (at 37 8C) due to the formation of DOPAchrome. The
percent enzyme inhibition was calculated as follows, by using
a program based in Excel 2000 (Microsoft, USA) developed for
this purpose:

% inhibition ¼ ½AB�AS=AB� 100 ð21Þ

Here the AB and AS are the absorbance values for the blank
and samples, respectively. After screening of the compounds,
median inhibitory concentrations (IC50) were also calculated. All
studies were carried out in triplicate at least, and the results
represent the mean �SEM (standard error of the mean).

4. Results and Discussion

4.1. Similarity analysis and design of training and test sets

The quality of a classification (or any QSAR) model depends on
the quality of the selected data set. One of the most critical as-
pects of constructing the training set is to warrant enough mo-
lecular diversity for it. Taking this into account, we selected a
data set of 658 compounds having a great degree of structural
variability. The 246 tyrosinase inhibitors considered in this
study are representative of families with different inhibition
modes and diverse structural patterns.

To demonstrate the structural diversity of these data sets,
we performed a hierarchical CA of the active and inactive
series.[95,96] Both dendrograms are given in Figures 2 and 3,
using the Euclidean distance (x axis) and the complete linkage
(y axis), illustrating the results of the k-NNCA developed in
active and inactive sets, correspondingly. As can be observed
in both binary trees, there is a great number of different sub-
sets, which prove the molecular variability of the selected com-
pounds in these databases.
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Because of the difficulty in evaluating the output dendro-
gram, another kind of CA is usually performed. In this sense
and also to split the whole group into two data sets (training
and predicting), we performed a k-MCA. The main idea of this
procedure consists of making a partition of either active or in-
active series of compounds in several statistically representa-
tive compound classes. This procedure ensures that any chemi-

cal class (as determined by the
clusters derived from k-MCA)
will be represented in both
compound series. This “ration-
al” design of the training and
predicting series allowed us to
design both sets that are rep-
resentative of the whole “ex-
perimental universe”.

We first carried out a k-MCA
with active compounds and
afterward, we did likewise
with inactive compounds. A
first k-MCA (k-MCA I) split the
tyrosinase inhibitors into 10
clusters. Additionally, the inac-
tive compound series was also
partitioned into 12 clusters (k-
MCA II). The kth total and
atom-type nonstochastic bilin-
ear indices were used, with all
variables showing p<0.05 for
the Fisher test. The results are
listed in Table 5.

Afterward, the selection of
the training and prediction
sets was performed by ran-
domly taking compounds be-
longing to each cluster. From
these 658 compounds, 478
were chosen at random to
form the training set, 183 of
which were actives, and 295
were inactives. The great
structural variability of the se-
lected training data set makes
possible the discovery of lead
compounds, not only with de-
termined mechanisms of tyro-
sinase inhibitory activity, but
also with novel modes of in-
hibition.

The remaining subseries,
composed of 63 tyrosinase in-
hibitors and 117 compounds
with different biological prop-
erties, were prepared as test
sets for the external set valida-
tion of the models. These
compounds were never used

in the development of the classification models. Figure 4 is a
graphic illustration of the procedure described above, where
two independent cluster analyses (one for active and the other
for inactive compounds) were performed to select a represen-
tative sample for the training and test sets.

Figure 2. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of tyrosinase inhibitors used
in the training and prediction sets.

Figure 3. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of inactive compounds (non-
tyrosinase inhibitors) used in the training and prediction sets.
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4.2. Discriminant models

4.2.1. Development

Once we perform a representative selection of training series,
they can be used in many different chemometric techniques to
fit discriminant functions such as SIMCA or neural networks. In
our case, however, we select the LDA given the simplicity of
the method, to derive discriminant functions that permit the
classification of compounds as either active (tyrosinase inhibi-
tors) or inactive. LDA is a method extensively reported in drug
design.[31–33,45–48,94,100–102]

In the present study, we developed classification functions
by using the total and group nonstochastic and stochastic bi-
linear indices as independent variables. These MDs were com-
puted with the TOMOCOMD–CARDD software according to

the weighting schemes proposed above in section 3.1 (see
Table 2).

Thus, 12 LDA-based QSAR models were obtained. The first
six models used the nonstochastic total and local bilinear indi-
ces [Eqs. (22)–(27)] and the remaining six, the stochastic molec-
ular descriptors [Eqs. (28)–(33)] . The classification models ob-
tained are given in Table 6, and in Table 7 the prediction per-
formances, Wilks’ statistics (l), the square of the Mahalanobis
distances (D2), and the Fisher ratio (F) for LDA-based QSAR
models with the training set are shown. All these statistical pa-
rameters measured the quality of the models determined. The
equations were shown to be statistically significant (p<
0.0001).

As can be observed in Table 7, the fitted models for Equa-
tions (26) and (32) showed the best results ; in these models,
the combination of van der Waals volume (V) and Mulliken
electronegativity (K) weighting schemes were used, including

the nonstochastic and stochastic bilinear indi-
ces. The best models [Eq. (26)] and [Eq. (32)] cor-
rectly classified 99.58 and 89.96% accuracy of
the training set. The equations showed high
Matthews correlation coefficients (C) of 0.99 and
0.79, respectively. C quantifies the strength of
the linear relation between the molecular de-
scriptors and the classifications, and it may
often provide a much more balanced evaluation
of the prediction than, for instance, the percen-
tages (accuracy).[111]

The best model with the nonstochastic bilin-
ear fingerprints [Eq. (26)] shows a percentage of
false actives in this data set of 0%, that is, no in-
active compounds were classified as actives out
of 295 cases. In addition, two compounds from
the group of 183 actives were misclassified as
inactive (1.09% misclassification).

In the statistical analysis of model [Eq. (32)]
we can show adequate results. Only 9.83% mis-
classification for the inactive group was ob-
served (29 inactive compounds were classified
as active out of a total of 295). In this case, 19
compounds out of 117 (10.38%) were false inac-
tives. These commented results are most of the

parameters commonly used in medical statistics (sensitivity,
specificity, and false positive rate (also known as ’false alarm
rate’)) for the whole set of developed models. While the sensi-
tivity is the probability of correctly predicting a positive exam-
ple, the specificity (also known as ’hit rate’) is the probability
that a positive prediction is correct.[111]

These statistical parameters mentioned above, together with
the linear discriminant canonical statistics : canonical regression
coefficient (Rcan) as well as chi-squared (c2) and its p level [p(c2)]
were checked, and the results are given in Table 7. The canoni-
cal transformations of the LDA results with the nonstochastic
[Eq. (26)] and stochastic [Eq. (32)] bilinear indices give rise to
canonical roots with good canonical correlation coefficients of
0.87 and 0.72. The c2 test permits us to asses the statistical sig-
nificance of this analysis as having a p level of <0.0001.

Table 5. Analysis of variance results of the k-MCAs for tyrosinase inhibi-
tors and inactive druglike compounds.

Variables Between SS[a] Within SS[b] Fisher ratio [F] p level[c]

Tyrosinase inhibitors clusters (k-MCA I)
VKb0

H(x) 74.98 6.22 316.24 0.00
VKb0(x) 319.25 19.50 429.20 0.00
VKb4L

H(xE) 199.73 16.66 314.44 0.00
VKb5L

H(xE) 159.77 16.23 258.09 0.00

Inactives clusters (k-MCA II)
VKb0

H(x) 382.18 53.55 318.77 0.00
VKb0(x) 375.92 41.96 400.18 0.00
VKb4L

H(xE) 645.11 40.11 718.49 0.00
VKb5L

H(xE) 687.14 43.72 702.06 0.00

[a] Variability between groups. [b] Variability within groups. [c] Level of
significance.

Figure 4. General algorithm used for designing the training and test sets throughout k-MCA.
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4.2.2. Orthogonalization and
external validation

A close inspection of the molec-
ular descriptors included in the
two best LDA-based QSAR
models showed that several of
these molecular fingerprints are
strongly interrelated to each
other (data not shown). To over-
come this difficulty, we used the
Randić orthogonalization pro-
cess of the molecular descrip-
tors. This process is an approach
in which molecular descriptors
are transformed in such a way
that they do not mutually corre-
late (see subsection 3.3.3). Both
the nonorthogonal (original) de-
scriptors and the derived orthog-
onal descriptors contain the
same information. Therefore, the

Table 6. Discriminant models obtained with total and local nonstochastic and stochastic bilinear indices.

LDA-based QSAR models obtained with nonstochastic bilinear indices Equation

Class=�1.054+2.701Q10� MVb1ACHTUNGTRENNUNG(x,y)�3.133Q10�10 MVb12 ACHTUNGTRENNUNG(x,y)�3.875Q10�4 MVb2L
H
ACHTUNGTRENNUNG(xE,,yE)�8.983Q10�4 MVb3L

H
ACHTUNGTRENNUNG(xE,yE)+9.924Q10�4 MVb3L ACHTUNGTRENNUNG(xE,yE)�0.927

MVb0L
H(xE�H,yE�H)+0.137 MVb1L

H(xE�H,yE�H)�2.756Q10�3 MVb3L
H(xE�H,yE�H)+6.643Q10�5 MVb6L

H(xE�H,yE�H)
(22)

Class=�0.216�2.624Q10�3 MPb2 ACHTUNGTRENNUNG(x,y)+1.607Q10�3 MPb3 ACHTUNGTRENNUNG(x,y)�5.192Q10�7 MPb9 ACHTUNGTRENNUNG(x,y)�1.060Q10�2 MPb3L
H
ACHTUNGTRENNUNG(xE,yE)+9.951Q10�3 MPb3L ACHTUNGTRENNUNG(xE,yE)

+1.845Q10�10 MPb15L ACHTUNGTRENNUNG(xE,yE)�7.128 MPb0L
H(xE�H,yE�H)+1.164 MPb1L

H(xE�H,yE�H)�7.339Q10�3 MPb5L
H(xE�H,yE�H)+1.841Q10�3 MPb6L

H(xE�H,yE�H)
(23)

Class=4.376Q10�2�7.176Q10�3 MKb0
H
ACHTUNGTRENNUNG(x,y)�3.660Q10�4 MKb3

H
ACHTUNGTRENNUNG(x,y)+1.126Q10�2 MKb1 (x,y)�1.450Q10�8 MKb11 (x,y)�5.481Q10�3 MKb3L

H
ACHTUNGTRENNUNG(xE,yE)

�2.613Q10�4 MKb4L
H
ACHTUNGTRENNUNG(xE,yE)+1.389Q10�10 MKb15L

H
ACHTUNGTRENNUNG(xE,yE)+5.839Q10�3 MKb3L ACHTUNGTRENNUNG(xE,yE)�2.642 MKb0L

H(xE�H,yE�H)+0.390 MKb1L
H(xE�H,yE�H)

(24)

Class=4.376Q10�2�1.817Q10�7 VPb9
H
ACHTUNGTRENNUNG(x,y)�1.466Q10�2 VPb0 ACHTUNGTRENNUNG(x,y)+4.114Q10�3 VPb2 ACHTUNGTRENNUNG(x,y)�1.068Q10�6 VPb9 ACHTUNGTRENNUNG(x,y)+2.357Q10�8 VPb10 (x,y)�0.229

VPb1L
H
ACHTUNGTRENNUNG(xE,yE)�9.258Q10�3 VPb3L

H
ACHTUNGTRENNUNG(xE,yE)+0.236 VPb1LACHTUNGTRENNUNG(xE,yE)+7.755Q10�3 VPb3L ACHTUNGTRENNUNG(xE,yE)+2.482Q10�10 VPb15L ACHTUNGTRENNUNG(xE,yE)+0.584 VPb0L

H(xE�H,yE�H)
(25)

Class=�1.359�1.583Q10�2 VKb0
H
ACHTUNGTRENNUNG(x,y)+1.808Q10�2 VKb0 ACHTUNGTRENNUNG(x,y)�3.356Q10�4 VKb4L

H
ACHTUNGTRENNUNG(xE,yE)+6.883Q10�5 VKb5L

H
ACHTUNGTRENNUNG(xE,yE) (26)

Class=0.213�1.353Q10�2 PKb2
H
ACHTUNGTRENNUNG(x,y)+9.503Q10�2 PKb1ACHTUNGTRENNUNG(x,y)�6.577Q10�6 PKb8ACHTUNGTRENNUNG(x,y)�4.318Q10�2 PKb3L

H
ACHTUNGTRENNUNG(xE,yE)�0.142 PKb0L ACHTUNGTRENNUNG(xE,yE)+4.071Q10�2 PKb3L

(xE,yE)+5.457Q10�9 PKb14L ACHTUNGTRENNUNG(xE,yE)+1.838 PKb1L
H(xE�H,yE�H)�0.737 PKb2L

H(xE�H,yE�H)+8.283Q10�4 PKb8L
H(xE�H,yE�H)�1.611Q10�5 PKb11L

H(xE�H,yE�H)
(27)

LDA-Based QSAR Models Obtained Using Stochastic Bilinear Indices Equation

Class=0.244+2.072Q10�2 MVb5L
H
ACHTUNGTRENNUNG(xE,yE)�1.655Q10�2 MVb13L

H
ACHTUNGTRENNUNG(xE,yE)+7.797Q10�4 MVb0L ACHTUNGTRENNUNG(xE,yE)�7.756Q10�3 MVb1L ACHTUNGTRENNUNG(xE,yE)+3.167Q10�3 MVb15L

(xE,yE)+9.155Q10�2 MVb1L
H(xE�H,yE�H)+1.299 MVb4L

H(xE�H,yE�H)�4.021 MVb6L
H(xE�H,yE�H)+0.284 MVb7L

H(xE�H,yE�H)+2.890 MVb8L
H(xE�H,yE�H)�0.529

MVb11L
H(xE�H,yE�H)

(28)

Class=0.367+0.116 MPb5L
H
ACHTUNGTRENNUNG(xE,yE)�6.444Q10�2 MPb13L

H
ACHTUNGTRENNUNG(xE,yE)�4.929Q10�2 MPb1L ACHTUNGTRENNUNG(xE,yE)�1.572Q10�2 MPb2LACHTUNGTRENNUNG(xE,yE)�4.250 MPb0L

H(xE�H,yE�H)+1.127
MPb1L

H(xE�H,yE�H)+0.740 MPb2L
H(xE�H,yE�H)+1.273 MPb3L

H(xE�H,yE�H)�2.742 MPb6L
H(xE�H,yE�H)�2.402 MPb11L

H(xE�H,yE�H)+3.582 MPb12L
H(xE�H,yE�H)

(29)

Class=7.356Q10�2�4.445Q10�2 MKb2L
H
ACHTUNGTRENNUNG(xE,yE)+0.176 MKb4L

H
ACHTUNGTRENNUNG(xE,yE)�0.149 MKb12L

H(xE)+3.926Q10�2 MKb13L
H
ACHTUNGTRENNUNG(xE,yE)�6.588Q10�2 MKb4L ACHTUNGTRENNUNG(xE,yE)�2.591Q

10�2 MKb5LACHTUNGTRENNUNG(xE,yE)+6.262Q10�2 MKb10L ACHTUNGTRENNUNG(xE,yE)�0.663 MKb0L
H(xE�H,yE�H)+0.305 MKb1L

H(xE�H,yE�H)�0.483 MKb9L
H
ACHTUNGTRENNUNG(xE�H)+0.386 MKb15L

H(xE�H,yE�H)
(30)

Class=3.706Q10�2+2.343Q10�2 VPb0
H
ACHTUNGTRENNUNG(x,y)�8.684Q10�2 VPb1

H
ACHTUNGTRENNUNG(x,y)+8.618Q10�2 VPb3

H
ACHTUNGTRENNUNG(x,y)�1.971Q10�2 VPb14

H
ACHTUNGTRENNUNG(x,y)+5.051Q10�2 VPb1L

H

(xE,yE)�9.229Q10�2 VPb5L
H
ACHTUNGTRENNUNG(xE,yE)+0.112 VPb6L

H
ACHTUNGTRENNUNG(xE,yE)�3.527Q10�2 VPb0L ACHTUNGTRENNUNG(xE,yE)�4.570Q10�2 VPb1L ACHTUNGTRENNUNG(xE,yE)+0.757 VPb0L

H(xE�H,yE�H)�1.582
VPb3L

H(xE�H,yE�H)+1.006 VPb5L
H(xE�H,yE�H)

(31)

Class=�0.390+0.130 VKb8
H
ACHTUNGTRENNUNG(x,y)�0.132 VKb15

H(x)+6.646Q10�2 VKb3 ACHTUNGTRENNUNG(x,y)�6.330Q10�2 VKb6 ACHTUNGTRENNUNG(x,y)+4.988Q10�2 VKb1L
H
ACHTUNGTRENNUNG(xE,yE)�0.125 VKb12L

H
ACHTUNGTRENNUNG(xE,yE)

+8.020Q10�2 VKb15L
H
ACHTUNGTRENNUNG(xE,yE)�1.929 Q10�2 VKb0L ACHTUNGTRENNUNG(xE,yE)�3.926Q10�2 VKb3LACHTUNGTRENNUNG(xE,yE)+5.045Q10�2 VKb10L ACHTUNGTRENNUNG(xE,yE)�0.613VKb0L

H(xE�H,yE�H)+0.594 VKb1L
H(xE�H,yE�H)

(32)

Class=0.377+1.033Q10�2 PKb1 ACHTUNGTRENNUNG(x,y)�0.159 PKb0L
H
ACHTUNGTRENNUNG(xE,yE)+0.596 PKb1L

H
ACHTUNGTRENNUNG(xE,yE)�0.555 PKb14L

H
ACHTUNGTRENNUNG(xE,yE)�0.205 PKb1L ACHTUNGTRENNUNG(xE,yE)+0.294 PKb10L ACHTUNGTRENNUNG(xE,yE)+2.051

PKb1L
H(xE�H,yE�H)�4.711 PKb2L

H(xE�H,yE�H)+13.854 PKb3L
H(xE�H,yE�H)�14.693 PKb5L

H(xE�H,yE�H)+3.363 PKb14L
H(xE�H,yE�H)

(33)

Table 7. Prediction performance and statistical parameters for LDA-based QSAR models in the training set.

Models[a] C[b] Accuracy
“Qtotal” [%]

Specificity
[%]

Sensitivity
“hit rate” [%]

False positive
rate [%]

Wilks’ l D2 F (c2) Rcan
[c]

LDA-based QSAR models obtained with nonstochastic bilinear indices
Eq. (22) (9) 0.83 91.84 88.7 90.2 7.1 0.47 4.82 59.5 359.6 0.73
Eq. (23) (10) 0.82 91.63 88.2 90.2 7.5 0.45 5.18 57.4 377.7 0.74
Eq. (24) (11) 0.87 93.93 93.3 90.7 4.1 0.43 5.50 61.0 393.2 0.75
Eq. (25) (11) 0.81 91.21 87.7 89.6 7.8 0.47 4.77 47.9 377.7 0.74
Eq. (26) (4) 0.99 99.58 100 98.9 0 0.24 13.06 366.3 668.6 0.87
Eq. (27) (11) 0.82 91.63 88.2 90.2 7.5 0.44 5.32 53.5 383.3 0.75

LDA-based QSAR models obtained with stochastic bilinear indices
Eq. (28) (11) 0.72 86.82 81.6 84.7 11.9 0.47 4.66 46.8 350.4 0.72
Eq. (29) (11) 0.77 88.91 85.7 85.2 8.8 0.49 4.45 44.7 339.0 0.72
Eq. (30) (11) 0.75 88.02 85.4 83.1 8.8 0.47 4.75 47.8 355.3 0.73
Eq. (31) (12) 0.72 86.82 80.6 86.3 12.9 0.54 3.53 32.4 285.8 0.68
Eq. (32) (12) 0.79 89.96 85.0 89.6 9.8 0.48 4.57 42.1 345.5 0.72
Eq. (33) (11) 0.76 88.70 83.1 88.5 11.2 0.47 4.72 47.5 353.7 0.73

[a] Values in parentheses indicate the quantity of variables of the models. [b] Matthews correlation coefficient.
[c] Canonical correlation coefficient obtained from the linear discriminant canonical analysis.
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same statistical parameters of the QSAR models are ob-
tained.[102–108] In Equations (34) and (35) we show the results of
the orthogonalization of the nonstochastic and stochastic bilin-
ear indices included in both models, respectively:

Class ¼ �2:251 þ 9:3001OðVKb0ðx,yÞÞ�3:5992OðVKb0
Hðx,yÞÞ

�1:3293OðVKb4L
HðxE,yEÞÞ þ 3:4724OðVKb5L

HðxE,yEÞÞ
N ¼ 478, l ¼ 0:24, D2 ¼ 13:06, F ¼ 366:3, R ¼ 0:87,

c2 ¼ 668:6, Q ¼ 99:5, C ¼ 0:99

ð34Þ

Class ¼ �0:245�29:3791OðVKb0L
HðxE�H,yE�HÞÞ

þ0:9912OðVKb1L
HðxE�H,yE�HÞÞ�1:2573OðVKb15L

HðxE,yEÞÞ
�3:0184OðVKb0LðxE,yEÞÞ þ 4:5665OðVKb10LðxE,yEÞÞ
�10:3906OðVKb12L

HðxE,yEÞÞ þ 2:1767OðVKb1L
HðxE,yEÞÞ

þ0:5008OðVKb3ðxÞÞ þ 75:4889OðVKb8
Hðx,yÞÞ

�36:10810OðVKb6ðx,yÞÞ�2:13611OðVKb3ðxE,yEÞÞ
�3:44612OðVKb15

Hðx,yÞ
N ¼ 478, l ¼ 0:48, D2 ¼ 4:57, F ¼ 42:1, Rcan ¼ 0:72,

c2 ¼ 345:5, Q ¼ 89:9, C ¼ 0:79

ð35Þ

Here, we use the symbols mO(bkACHTUNGTRENNUNG(x,y)), where the superscript
m expresses the order of importance of the variable (bkACHTUNGTRENNUNG(x,y))
after a preliminary forward stepwise analysis and O means or-
thogonal.

It must be highlighted here that the orthogonal descriptor-
based models coincide with the collinear (ordinary) TOMO-
COMD–CARDD-descriptors-based models in all the statistical
parameters. The statistical coefficients of LDA QSARs l, F, D2, C,
and accuracy are the same whether we use either a set of non-
orthogonal descriptors or the corresponding set of orthogonal
indices. This is not surprising, because the latter models are
derived as a linear combination of the former and cannot have
more information content than them.[102–108]

The classification of all compounds in the complete training
dataset provides some assessment of the goodness of the fit
of the models, but it does not provide a thorough criterion of
how the models can predict the biological properties for new
compounds. To assess such predictive power, the use of an ex-
ternal test set is essential.[112, 113]

In this sense, the activity of the compounds in the test set
was predicted with the obtained discrimination functions. The
overall accuracy for the two best models of the nonstochastic
and stochastic bilinear fingerprints [Eqs. (26) and (32)] was
100% (C=1) and 87.78% (C=0.73), respectively, in the predic-
tion series. The accuracy and other statistical parameters (sen-
sitivity, specificity, and false positive rate) of the test set are de-
picted in Table 8. Furthermore, in Figures 5 and 6 a plot of
%DP (see section 3.3.2) can be observed, from the classifica-
tion obtained by models [Eq. (26)] and [Eq. (32)] , for each
compound in the training and test sets. The results obtained
with the approach used herein are adequate; they validate
these models for use in ligand-based virtual screening.

The complete set of organic compounds in the training data
set as well as their classification (including canonical scores)

using all the models are shown in Tables 2–5 of the Supporting
Information. In addition, the results of classification using all
developed equations for active and inactive compounds in the
test set are shown in Tables 6–9 of the Supporting Information.

4.3. Database virtual screening reveals new classes of
ACHTUNGTRENNUNGtyrosinase inhibitors

The massive cost of developing new drugs and the small eco-
nomic size of the market for most of the drugs make this de-
velopment slow. For these reasons, pharmaceutical industries
require, now more than ever, a new approach that is able to
answer the challenge of discovering new lead drugs at mini-
mal cost.[114] In this way, the pharmaceutical industry has based
its paradigm in high-throughput screening (HTS) as a technolo-
gy for cutting time and costs, even though no guarantees for
success are provided.[115] Despite great advances in the biologi-
cal screening of large numbers of compounds by HTS, the pro-
cess of drug discovery is still an arduous task. In this sense, vir-
tual screening (based on QSAR techniques) has emerged as an
interesting alternative to HTS and as an important drug-discov-
ery tool.[18,19]

One of the most important features of any QSAR model is
its ability to predict the desired activity for new compounds
from compound databases. In this context the development of
computational methods that permit in silico assays of tyrosi-
nase inhibitor activity for virtual compound libraries before
these compounds are synthesized in the laboratory can be
considered as an alternative to HTS in the drug-discovery pro-
cess.

With the aim of testing the feasibility of our models and to
show the potential of the current approach to detect new lead
compounds with “unknown” structures, we carried out a simu-
lated ligand-based virtual screen of tyrosinase inhibitors.
Table 9 lists the names of the 75 compounds that were chosen
for this along with their reported activity or inactivity and cor-

Table 8. Prediction performance for LDA-based QSAR models in the test
set.

Models C[a] Accuracy
“Qtotal” [%]

Specificity
[%]

Sensitivity
“hit rate” [%]

False positive
rate [%]

LDA-based QSAR models obtained with nonstochastic bilinear indices
Eq. (22) 0.78 90.00 83.6 88.9 9.4
Eq. (23) 0.80 91.00 83.8 90.5 9.4
Eq. (24) 0.78 90.00 84.6 87.3 8.5
Eq. (25) 0.83 91.67 83.3 95.2 10.3
Eq. (26) 1 100 100 100 0
Eq. (27) 0.79 90.00 80.8 93.7 12.0

LDA-based QSAR models obtained with stochastic bilinear indices
Eq. (28) 0.68 84.44 73.3 87.3 17.1
Eq. (29) 0.74 87.78 79.7 87.3 12.0
Eq. (30) 0.71 86.67 79.1 84.1 12.0
Eq. (31) 0.68 85.00 76.5 82.5 13.7
Eq. (32) 0.73 87.78 82.5 82.5 9.4
Eq. (33) 0.76 88.89 84.1 84.1 8.5

[a] Matthews correlation coefficient.
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responding literature reference. The structures of these com-
pounds are shown in Table 10 of the Supporting Information.

In the first instance, a k-NNCA was carried out to show the
molecular diversity in the data set of the virtual screen. Many
different subsystems can be observed in the dendrogram of
Figure 7, proving the great molecular variability of the com-
pounds.

The results for the classification of the compounds in the vir-
tual screen (external set) are given in Table 9. In addition, the
values of %DP (posterior classification probabilities) and can-
onical scores of the compounds with all the models obtained

are shown in Table 11 of the
Supporting Information. A plot
of %DP values of the good clas-
sification for the models
[Eq. (26)] and [Eq. (32)] are
given in Figures 8 and 9. These
figures are pictorial representa-
tions of the accuracy of the
best two LDA-based QSAR
models, which classified most of
the compounds included in this
“simulated” virtual screening ex-
periment well. For instance,
90.66 and 82.66% of the
screened compounds were well
classified by Equations (26) and
(32), respectively. Verification of
the predictions carried out by
all the models obtained comes
from recently published reports
from which these compounds
were selected (see ’Ref.’ column
of Table 9).

After making this type of
analysis, the strategy is to in-
clude in the training the new
compounds discovered through
the virtual screening set, and to
carry out new models to find
novel discrimination functions.
However, a new model could
have some variability with re-
spect to the previous one, due
to the inclusion of new kinds of
organic compounds, but this
can increase the available spec-
trum of compounds and permit
the recognition of other differ-
ent structural patterns manifest-
ed in a better selection of com-
pounds from the database as ty-
rosinase inhibitors. Therefore, a
constant improvement of the
dataset is one of the major im-
pacts and is considered as an
iterative process, because it con-

tributes toward getting better classification models in which a
great quantity of compounds with novel structural features are
evaluated against the activity of the enzyme.

Several drugs were identified by the models as possible tyro-
sinase inhibitors. There is great variability in the functions of
these compounds. Such drugs included, for example, one anti-
rheumatic compound (penicillamine; also used as a copper-
chelating agent in the treatment of Wilson’s hepatolenticular
degeneration), one anti-hyperthyroid compound (methima-
zole), one anti-hypertensive agent (captopril), one mydriatic
lead (yohimbine; also used as pharmacological probe for a2A-

Figure 5. Plot of the predicted %DP from [Eq. (26)] (using nonstochastic bilinear indices) for each compound in
the training and test sets. Compounds 1–183 and 184–246 are active (tyrosinase inhibitors) in the training and
test sets, respectively; compounds 247–541 and 542–658 are inactive (non-tyrosinase inhibitors) in both training
and test sets, correspondingly.

Figure 6. Plot of the %DP from [Eq. (32)] (using stochastic bilinear indices) for each compound in the training and
test sets. Compounds 1–183 and 184–246 are active (tyrosinase inhibitors) in the training and test sets, respec-
tively; compounds 247–541 and 542–658 are inactive (non-tyrosinase inhibitors) in both training and test sets,
correspondingly.
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Table 9. Results of ligand-based virtual screening.

Compound[a] Class[b] Ref. Compound[a] Class[b] Ref.

Active Compounds (Tyrosinase Inhibitors)
1 p-Nitrophenol 1)+ + + + + +

2)+ + + + + +

[163]
[132]

27 Dithiothreitol 1)+ + + � + +

2)+ + + � + +

[150]

2 3-(3,4-Dihydroxyphenyl)-l-alanine 1)+ + + + + +

2)+ + + + + +

[140] 28 Azelaic acid 1)+ + + + + +

2)+ + + + + +

[167]

3 3-Amino-4-hydroxybenzoic acid 1)+ + + + + +

2)+ + + + + +

[140] 29 Undecandioic acid 1)+ + + + + +

2)+ + + � + +

[167]

4 4-Amino-3-hydroxybenzoic acid 1)+ + + + + +

2)+ + + + + +

[140] 30 Suberic acid 1)+ + + + + +

2)+ + + + + +

[167]

5 3,4-Diaminobenzoic acid 1)+ + + + + +

2)+ + + + + +

[140] 31 Sebacic acid 1)+ + + + + +

2)+ + + + + +

[167]

6 3-Aminobenzoic acid 1)+ + + + + +

2)+ + + + + +

[140] 32 Dodecandioic acid 1)+ + + + + +

2)+ + + � + +

[167]

7 4-Aminobenzoic acid 1)+ + + + + +

2)+ + + + + +

[140] 33 Tridecandioic acid 1)+ + + + + +

2)+ + + � + +

[167]

8 4,6-O-Hexahydroxydiphenylglucose 1)+ + + + + +

2)+ + + + + +

[164] 34 Traumatic acid 1)+ + + + + +

2)+ + + � + +

[167]

9 Tunicamycin 1)+ + + + + +

2)+ + + + + +

[149] 35 Pantothenic acid 1)+ + + + + +

2)+ + + + + +

[148]

10 Methyl p-coumarate 1)+ + + + + +

2)+ + + + + +

[130] 36 5-(Hydroxymethyl)-2-furfural 1)+ + + + + +

2)+ + + + + +

[168]
[159]

11 o-Phenylphenol 1)+ + + + + +

2)+ + + + + +

[130] 37 Hinokitiol 1)+ + + + + +

2)+ + + + + +

[169]

12 Phenylhydroquinone 1)+ + + + + +

2)+ + + + + +

[130] 38 Penicillamine 1)+ + + � + +

2)+ + + � + +

[170]

13 Chamaecin 1)+ + + + + +

2)+ + + + + +

[130]
[151]

39 Toluic acid 1)+ + + + + +

2)+ + + + + +

[163]

14 Stearyl glycyrrhetinate 1)+ + + + + +

2)+ + + � + +

[80] 40 1)+ + + + + +

2)+ + + + + +

[171]

15 2-(4-Methylphenyl)-1,3-selenazol-4-one 1)+ + + + + +

2)� � + + � +

[118]
[165]

41 1)+ + + + + +

2)+ + + + + +

[171]

16 1)+ + + + + +

2)� � � + � �
[118] 42 3,5-Dihydroxy-4’-O-methoxystilbene 1)+ + + + + +

2)+ + + + + +

[172]

17 1)+ + + + + +

2)� � � + � �
[118] 43 p-Hydroxybenzoic acid 1)+ + + + + +

2)+ + + + + +

[125]

18 1)+ + + + + +

2)� � + + � +

[118] 44 o-Hydroxybenzoic acid 1)+ + + + + +

2)+ + + + + +

[125]

19 3-Fluorotyrosine 1)+ + + + + +

2)+ + + + + +

[148] 45 Cysteine 1)+ + + � + +

2)+ + + � + +

[173]

20 N-Acetyltyrosine 1)+ + + + + +

2)+ + + + + +

[148] 46 Methimazole 1)+ + + � � +

2)+ + + � + +

[173]

21 N-Formyltyrosine 1)+ + + + + +

2)+ + + + + +

[148] 47 BMY-28438 1)+ + + + + +

2)+ + + + + +

[173]

22 Gentisic acid 1)+ + + + + +

2)+ + + + + +

[10] 48 Captopril 1)+ + + � + +

2)+ + + � + +

[174]

23 6-BH4 1)+ + � � + +

2)+ + + + � �
[166] 49 Yohimbine 1)+ + + � + +

2)+ + + � + +

[175]

24 7-BH4 1)+ + � � + +

2)+ + + + + +

[166] 50 4-(Phenylazo)phenol 1)+ + + + + +

2)+ + + + + +

[158]

25 Propylparaben 1)+ + + + + +

2)+ + + + + +

[131] 51 SACat[c] 1)+ + + � + +

2)� + + + + +

[158]

26 Phenylalanine 1)+ + + + + +

2)+ + + + + +

[148] 52 NPACat[d] 1)+ + + + + +

2)+ + + + + +

[158]

53 DNPACat[e] 1)+ + + + + +

2)+ + + + + +

[158] 55 Dodecyl gallate 1)+ + + + + +

2)+ + + + + +

[176]

54 EDTA[f] 1)� � + + + +

2)� + + + + +

[129] 56 Gallic acid 1)+ + + + + +

2)+ + + + + +

[176]

Inactive Compounds
57 1)� � + � + �

2)� � + � + +

[81] 67 5-Methyluracil 1)� � � + + +

2)� � � � � �
[122]

58 1)� � + � + �
2)� � + � + +

[81] 68 Uracil 1)� � � � + +

2)� � � � � �
[122]

59 1)� � � � + �
2)+ � � + + +

[81] 69 Thiourea 1)� � � � � �
2)� � � � � �

[146]
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adrenoreceptor studies as well as in the treatment of impo-
tence), one antibacterial molecular entity (BMY-28438), and
one analgesic and anti-inflammatory compound (gentisic acid).
As can be observed there is also great variability in their mo-
lecular structures. This result is the most important validation
for the models developed herein because we have demon-
strated that they are able to detect a series of drugs as active,
and these compounds have shown the predicted activity. This
approach is very interesting because the drugs with some
pharmacological use that were selected as new lead tyrosinase
inhibitors have well-established methods of synthesis, and

their toxicological, pharmacody-
namic, and pharmaceutical be-
haviors are also well known.

4.4. Computational drug
discovery: in silico biological
ACHTUNGTRENNUNGactivity modeling and
experimental results

As shown, we explored the abili-
ty of our classification models to
find new subsystems carrying
out an experiment of lead gen-
eration for the case of tyrosinase
inhibitors. These results encour-
aged us to develop a search for
novel active compounds not yet
described in the literature as ty-
rosinase inhibitors. In this con-
text, one of our research teams
has been focused mainly on
trial-and-error searching for new
tyrosinase inhibitors.[14–16] At the
same time, we are also identify-

ing new drug candidates using computational screening
(based on QSAR techniques). Herein, we perform in silico
assays for a cycloartane family isolated and characterized from
natural sources (herbal plants), searching novel tyrosinase in-
hibitors by using the discriminant functions obtained through
the TOMOCOMD–CARDD method and LDA technique.

The LDA-based QSAR models were used to evaluate seven
compounds, and in order to corroborate the predictions, they
were isolated, and an in vitro assay against the enzyme was
carried out. Table 10 lists the %DP values of the compounds in
the data, as well as their canonical scores using all the devel-

Table 9. (Continued)

Compound[a] Class[b] Ref. Compound[a] Class[b] Ref.

60 Caffeine 1)� � � � + �
2)� � � � � �

[83] 70 Veratric acid methyl ester 1)� � � � + �
2)� � � � � �

[154]

61 Trimethylresveratrol 1)� � � � + �
2)� � � � � �

[138]
[84]

71 6-Nitroquipazine 1)� � � � + �
2)� � � � � �

[177]

62 4-Aminoazobenzene-4’-sulfonic acid 1)+ + + � + +

2)+ � + � + +

[78] 72 4-Methoxybenzaldehyde-O-ethyloxime 1)� � � � + �
2)� � � � � �

[85]

63 2-Methoxy-4-isopropyl benzaldehyde 1)� � � � + �
2)� � � + � �

[151] 73 1)+ + + + + +

2)+ + + + + +

[85]

64 Petroselinic acid 1)+ + + � + +

2)� + + � + +

[167] 74 1)� + � + + +

2)+ + + + + +

[85]

65 Crocusatins F 1)� � � + + �
2)� � � + � �

[122] 75 Phytyl-1-hexanoate 1)+ + + + + +

2)� � + � + +

[92]

66 2-Formyl-5-methoxyfuran 1)� � � � + �
2)� � � � � �

[122]

[a] Structures of these tyrosinase inhibitors are given in Table 10 of the Supporting Information. [b] Results for the classification of compounds in this set:
1) classification of each compound using the obtained models with nonstochastic bilinear indices in the following order: Eqs. (22), (23), (24), (25), (26), and
(27); 2) classification of each compound using the obtained models with stochastic bilinear indices in the following order : Eqs. (28), (29), (30), (31), (32),
and (33). [c] SACat=4-[(4-sulfonamido)azo]-1,2-benzenediol. [d] NPACat=4-[(4-nitrophenyl)azo]-1,2-benzenediol. [e] DNPACat=4-[(2,4-dinitrophenyl)azo]-
1,2-benzenediol. [f] ethylenediaminetetraacetic acid.

Figure 7. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of active/inactive com-
pounds used for evaluating the predictive ability of the QSAR models for ligand-based virtual screening.
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oped models. These results exemplify how the present ap-
proach could be used for the selection and identification (lead
generation) of novel tyrosinase inhibitors, which may be used
to prevent or treat pigmentation disorders.

As can be observed, the theoretical predictions have a gen-
erally very good coincidence with the observed activity for all
the compounds. All the chemical structures have inhibitory ac-
tivity toward mushroom tyrosinase. Only one of them, com-
pound CA5 (IC50=22.21 mm) showed less activity than kojic
acid, a tyrosinase inhibitor reference. The remaining com-
pounds, CA1 (IC50=7.92 mm), CA2 (IC50=15.94 mm), CA3 (IC50=

8.32 mm), CA4 (IC50=12.09 mm),
and CA7 (IC50=4.93 mm) exhib-
ited pronounced activities when
compared with standard tyrosi-
nase inhibitors like kojic acid
(IC50=16.67 mm) or l-mimosine
(IC50=3.68 mm). In addition, it is
important underscore the case
of compound CA6 (IC50=

1.32 mm), which has very potent
activity against the enzyme,
even compared with the refer-
ence drugs. The structures of
the compounds are depicted in
Figure 10.

Taking into account this
result we also made a k-NNCA
for all the active compounds in-
cluded in the training, test, and
virtual screening sets and the
novel compounds. This hier-
archical CA analysis was realized
with the objective of comparing
structural similarities between
the newly discovered active
compounds and all the active
dataset. The resulting dendro-
gram shows the great degree of
structural variability in the sub-
sets of the complete data under
investigation (Figure 11). An ex-
haustive analysis carried out for
each cluster showed that these
new compounds were included
in a cluster together with some
steroids such as 68, 69, 70, and
244, all compounds of the train-
ing set. This result is reasonable
because the novel organic com-
pounds are methyl steroids, a
derived family of steroids. In this
way, it is also important to high-
light that CA6 (IC50=1.32 mm) is
very close to compound 244
(IC50=2.93 mm) in the cluster in
correspondence to the similarity

of their structural features and potent tyrosinase inhibitory ac-
tivity (see Figure 1 of the Supporting Information and
Figure 10).

The result is a very promising starting point for the future
design optimization for new compounds with higher tyrosi-
nase activity. In this sense, compound CA6 presented more
potent effects in the inhibition of tyrosinase than the reference
drug l-mimosine, and this result opens the door to a virtual
study of this structural pattern in order to improve it in the
search for druglike compounds with tyrosinase inhibitory activ-
ity. Besides, this structure can be selected as hit, and make a

Figure 8. Plot of the %DP from [Eq. (26)] (using nonstochastic bilinear indices) for each compound selected in vir-
tual screening protocols. Compounds 1–56 and 57–75 are active and inactive, respectively.

Figure 9. Plot of the %DP from [Eq. (32)] (using stochastic bilinear indices) for each compound selected in virtual
screening protocols. Compounds 1–56 and 57–75 are active and inactive, respectively.
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chemistry optimization to find the appropriate combination of
lead activity, pharmacological properties, toxicity, and good be-
havior in clinical animal assays. It is important to recall that the
aim of this study is not only to validate the model but also to
provide an experimental example of how to use the model for
potential drug discovery.

5. Conclusion

Tyrosinase attracts scientific interest in the search for new com-
pounds that inhibit its activity, owing to its important role in
hyperpigmentation and melanogenesis disorders.[5–8] The dis-
covery and characterization of these novel tyrosinase inhibitors
have become an important area of study for their potential ap-
plications. In recognition of the complexity and cost of the
process of drug discovery, the use of “rational” search method-
ologies is recommended. Consequently, medicinal chemists are
called to develop more efficient strategies for the search of

novel candidates to be assayed
as druglike compounds.[18,19] In
this sense, the introduction and
use of graph-theoretical MDs for
rational drug design has
become an attractive tool for
medicinal chemists. The fusion
of HTS and classification-based
QSAR models in an attempt to
minimize costs in terms of time,
finances, and human and animal
resources is becoming a viable
alternative to massive screening.
In this way and taking into ac-
count that most of the known
tyrosinase inhibitor compounds
have been discovered by empiri-
cal ways (trial-and-error meth-

ods), we make use of a QSAR approach for the biological eval-
uation of new compounds isolated and characterized from
herbal plants.

Herein we present a new set of molecular descriptors,
namely nonstochastic and stochastic bilinear indices, imple-
mented in TOMOCOMD–CARDD, and their application in the
rational selection of new active compounds against tyrosinase.
In addition, we show that the new molecular descriptors im-
plemented in the TOMOCOMD–CARDD approach can be ap-
plied to generate useful discriminant models for the classifica-
tion of compounds as tyrosinase inhibitors. This method per-
mits the prediction of the biological property under consider-
ation, thus increasing the likelihood of an in silico discovery of
new candidate lead compounds and minimizing the use of re-
sources. Considering a training data set of compounds with
considerable structural variation, we decrease the degree of
uncertainty for this process. These collected data of the active
compounds can be used by all researchers as an important

Table 10. Results of ligand-based in silico screening and tyrosinase inhibitory activities for new cycloartane compounds.[a]

Compound[b] %DP[c] Scores[d] %DP[c] Scores[d] %DP[c] Scores[d] %DP[c] Scores[d] %DP[c] Scores[d] %DP[c] Scores[d] IC50 [mm][e]

CA1
99.79 3.19 99.83 �3.21 99.74 2.96 99.90 �3.73 �100.0 2.57 99.62 2.85

7.92�0.387
98.01 �2.25 97.74 2.17 96.24 1.88 97.53 �2.51 97.28 2.08 97.02 2.00

CA2
99.69 3.03 99.70 �2.95 99.43 2.62 99.77 �3.36 �100.0 2.74 99.36 2.62

15.94�1.93
99.30 �2.74 98.00 2.23 95.74 1.83 94.64 �2.09 96.29 1.94 97.22 2.03

CA3
99.33 2.67 99.20 �2.51 98.62 2.24 99.55 �3.10 �100.0 2.70 98.49 2.25

8.32�0.097
88.25 �1.41 85.68 1.27 85.07 1.22 88.23 �1.65 90.49 1.48 90.68 1.46

CA4
99.22 2.59 98.93 �2.38 98.38 2.17 99.49 �3.03 �100.0 2.70 98.05 2.13

12.09�1.03
81.39 �1.18 81.00 1.12 79.65 1.07 87.72 �1.63 88.86 1.40 87.40 1.31

CA5
99.47 2.77 99.41 �2.65 99.07 2.41 99.64 �3.21 �100.0 2.68 98.83 2.35

22.21�1.94
95.79 �1.90 93.39 1.66 82.75 1.15 88.21 �1.65 89.82 1.45 84.31 1.20

CA6
99.91 3.59 99.95 �3.71 99.91 3.39 99.94 �3.93 �100.0 2.71 99.78 3.09

1.32�0.373
99.28 �2.72 99.29 2.73 98.70 2.38 98.54 �2.79 99.30 2.72 98.99 2.50

CA7
99.71 3.05 99.76 �3.04 99.57 2.73 99.80 �3.40 �100.0 2.72 99.17 2.51

4.93�0.197
98.39 �2.35 97.48 2.12 96.02 1.86 97.12 �2.43 97.28 2.08 98.25 2.24

[a] For each compound two rows of data are listed; upper row: classification of each compound using the obtained models with nonstochastic bilinear in-
dices in the following order: Eqs. (22), (23), (24), (25), (26), and (27); lower row (in italic) ; classification of each compound using the obtained models with
stochastic bilinear indices in the following order: Eqs. (28), (29), (30), (31), (32), and (33). [b] Molecular structures of these compounds are shown in
Figure 10. [c] %DP= [P ACHTUNGTRENNUNG(Active)�P ACHTUNGTRENNUNG(Inactive)] 100. [d] Canonical scores. [e] 50% Inhibitory concentration (�SEM) against tyrosinase.

Figure 10. Molecular structures of the new cycloartane compounds.
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tool not only for theoretical research but also for general scien-
tific work in this area. The simulated virtual screen of com-
pounds for tyrosinase inhibitor activity has proven the ability
of our models to adequately discriminate new active com-
pounds from inactives and the possibilities of in silico identifi-
cation of novel tyrosinase inhibitors.

The novel MDs together with pattern-recognition techniques
can be used for increasing the rate at which new lead-like
compounds are discovered on the way to experimental screen-
ing and in vitro pharmacological assays. An experimental cor-
roboration was made through the isolation, characterization,
and assay for tyrosinase inhibition of the seven reported new
organic compounds. Research in the field of natural product
chemistry has not only formed the scientific basis for the tradi-
tional use of medicinal plants, but also plays an important role
in the discovery of pharmaceutical, nutraceutical, and cosmetic
bioactive ingredients.[116] For that reason, a symbiosis between
methods in natural product chemistry and in silico approaches
can provide new clues to the process of rational drug design,
as well as a starting point in the search for not only increased
efficacy, but also for more potent tyrosinase inhibitors, which
may be used to treat the disorders of hyperpigmentation and
melanogenesis.
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